Targeting Aberrant Non-Homologous End Joining in Multiple Myeloma: Role of the Classical and Alternative Pathways in Genomic Instability

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3417-3417 ◽  
Author(s):  
Teresa Calimeri ◽  
Daniele Caracciolo ◽  
Nicola Amodio ◽  
Mehmet Kemal Samur ◽  
Marzia Leotta ◽  
...  

Abstract Multiple Myeloma (MM) is characterized by the growth of malignant plasma cells harboring numerous genomic aberrations. The molecular basis driving MM genomic instability is still largely unknown. The ability to repair DNA damages is essential for the maintenance of its integrity, especially the double-strand breaks (DSBs) which are mainly repaired by Non Homologous End Joining (NHEJ). We have investigated NHEJ pathway in myeloma and observed a significant association between up-regulated NHEJ pathway-related gene expression and poor overall survival in two large datasets (IFM and Arkansas) in myeloma. We have also observed a higher end joining (EJ) activity in MM cell lines compared to normal cells using a dual gene plasmid-based assay utilizing Luciferase (LUC) as a test gene to measures end joining, and Alkaline Phosphatase (SEAP) as a reporter gene to control for transfection efficiency. Moreover, we confirmed an increased NHEJ activity in several primary patient myeloma cells at different disease stage. Based on this rationale, since an altered NHEJ has been linked to genomic instability and its inhibition leading to eventual cell death, we hypothesized that the aberrant NHEJ can be used as a potential therapeutic target in MM. To address the relevance of NHEJ inhibition in MM cell proliferation and survival, we used SCR7, an inhibitor of Ligase IV (Lig-IV) which is essential for ligation of the double strand breaks following their recognition by the KU70/KU80 heterodimer and the recruitment of DNA-PKcs. We tested 4 different MM cell lines (U266, R8226, MM1s and Dox40), however, except for some level of inhibition in Dox40 (IC50, between 50 and 100 uM at 72 hours), the other cell line growth was not significantly affected (R8226 - IC30 at the concentration; and U266 and MM1s did not reach IC30). The same data were confirmed by Annexin V/7AAD staining and Caspase assay. Interestingly, expression of Lig-IV estimated by western blot analysis, inversely correlated with MM cells sensitivity suggesting that higher protein concentration may require higher drug levels for inhibition. Consistent with this result, we observed a strong inhibition of the NHEJ pathway by ku86-directed shRNAs, which was able to induce cell death in the more resistant MM cell line u266. Subsequently we used the dual gene plasmid-based assay to evaluate the effect of sub-lethal dose (20 uM) of SCR7 on NHEJ in 3 MM cell lines (u266, R8226 and MM1s) and observed an increased recombination activity in 2 of them. We also confirmed these data with another NHEJ inhibitor, NU7441, which target DNA-PK; and by using ku86-shRNA in U266 cell line. Moreover we observed an accumulation of unrepaired DSBs at the genome level as demonstrated by an increased γ-H2AX by western blotting. These results suggested the possibility that the inhibition of the NHEJ by blocking Lig-IV could activate the alternative NHEJ pathway (a-NHEJ), which is more error-prone compared to the classical NHEJ (c-NHEJ). To confirm this hypothesis further, we treated MM cell lines with sub-lethal dose of NU7441 (2.5 uM), Benzamide (2.5 uM), an inhibitor of PARP, which is one of the main protein involved in the a-NHEJ, or both. The different modulation observed with single and combination treatments, along with the ability of NU7441 to revert sensitivity to Benzamide in R8226 cells, suggested that inhibition of the classical pathway could switch on the a-NHEJ and indicated its basal activity at least in this cell line. Ongoing study is assessing the influence of such compounds on NHEJ in primary MM cells and their impact on acquisition of new genomic changes. In conclusion, our data confirm the aberrant activation of NHEJ in MM, and suggest the potential role for both classical and more error-prone a-NHEJ pathways in inducing genomic instability, which may require a dual inhibition to trigger myeloma cell death. Disclosures No relevant conflicts of interest to declare.

DNA Repair ◽  
2006 ◽  
Vol 5 (6) ◽  
pp. 741-749 ◽  
Author(s):  
Kyoko Nakamura ◽  
Wataru Sakai ◽  
Takuo Kawamoto ◽  
Ronan T. Bree ◽  
Noel F. Lowndes ◽  
...  

2009 ◽  
Vol 106 (37) ◽  
pp. 15762-15767 ◽  
Author(s):  
Samantha G. Zeitlin ◽  
Norman M. Baker ◽  
Brian R. Chapados ◽  
Evi Soutoglou ◽  
Jean Y. J. Wang ◽  
...  

The histone H3 variant CENP-A is required for epigenetic specification of centromere identity through a loading mechanism independent of DNA sequence. Using multiphoton absorption and DNA cleavage at unique sites by I-SceI endonuclease, we demonstrate that CENP-A is rapidly recruited to double-strand breaks in DNA, along with three components (CENP-N, CENP-T, and CENP-U) associated with CENP-A at centromeres. The centromere-targeting domain of CENP-A is both necessary and sufficient for recruitment to double-strand breaks. CENP-A accumulation at DNA breaks is enhanced by active non-homologous end-joining but does not require DNA-PKcs or Ligase IV, and is independent of H2AX. Thus, induction of a double-strand break is sufficient to recruit CENP-A in human and mouse cells. Finally, since cell survival after radiation-induced DNA damage correlates with CENP-A expression level, we propose that CENP-A may have a function in DNA repair.


2020 ◽  
Author(s):  
Eloise Pariset ◽  
Ianik Plante ◽  
Artem L. Ponomarev ◽  
Louise Viger ◽  
Trevor Evain ◽  
...  

ABSTRACTCosmic radiation, composed of high charged and energy (HZE) particles, causes cell death and mutations that can subsequently lead to cancers. Radiation-mediated mutations are induced by inter- and intra-chromosomal rearrangements (translocations, deletions, inversions) that are triggered by misrepaired DNA breaks, especially double-strand breaks (DSBs). In this work, we introduce a new model to predict radiation-mediated induction of cell death and mutation in two different cell lines across a large range of linear energy transfer (LET) values, based on the assumption that DSBs cluster into repair domains, as previously suggested by our group. Specifically, we propose that the probabilities of cell survival and cell mutation can be determined from the number of DSBs and the number of pairwise DSB interactions forming radiation-induced foci. We computed the distribution and locations of DSBs with the new simulation code RITCARD (relativistic ion tracks, chromosome aberrations, repair, and damage) and combined them with experimental data from HF19 human fibroblasts and V79 Chinese hamster cells to derive the parameters of our model and expand its predictions to the relative biological effectiveness (RBE) for cell survival and mutation in both cell lines in response to 9 different irradiation particles and energies ranging from 10 to 1,600 MeV/n. Our model generates the correct bell shape of LET dependence for RBE, as well as similar RBE values as experimental data, notably including data that were not used to set the model parameters. Interestingly, our results also suggest that cell orientation (parallel or perpendicular) with respect to the HZE beam can modulate the RBE for both cell death and mutation frequency. Cell orientation effects, if confirmed experimentally, would be another strong piece of evidence for the existence of DNA repair domains and their critical role in interpreting cellular sensitivity to cosmic radiation and hadron therapy.AUTHOR SUMMARYOne of the main hazards of human spaceflight beyond low Earth orbit is space radiation exposure. Galactic cosmic rays (GCRs), in particular their high-charge and high-energy particle component, induce a unique spatial distribution of DNA double strand breaks in the nucleus along their traversal in the cell [1], which result in significantly higher cancer risk than X-rays [2]. To mitigate this hazard, there is a significant need to better understand and predict the effects of cosmic radiation exposure at the cellular level. We have computationally predicted two biological endpoints – cell survival and probability of mutations, critical for cancer induction mechanisms – for the full spectrum of cosmic radiation types and energies, by modeling the distribution of DNA damage locations within the cell nucleus. From experimental results of cell survival and mutation probability in two standard cell lines, we were able to derive the parameters of the model for multiple radiation qualities, both biological endpoints, and two irradiation orientations. The model was validated against biological data and showed high predictive capability on data not used for tuning the model. Overall, this work opens new perspectives to predict multiple responses to cosmic radiation, even with limited experimental data available.


Author(s):  
Roopa Thapar

DNA double-strand breaks (DSBs) are deleterious lesions that are generated in response to ionizing radiation or replication fork collapse that can lead to genomic instability and cancer.  Eukaryotes have evolved two major pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ) to repair DSBs.  Whereas the roles of protein-DNA interactions in HR and NHEJ have been fairly well defined, the functions of small and long non-coding RNAs and RNA-DNA hybrids in the DNA damage response is just beginning to be elucidated.  This review summarizes recent discoveries on the identification of non-coding RNAs and RNA-mediated regulation of DSB repair


Sign in / Sign up

Export Citation Format

Share Document