Mutation in Wilms' Tumor 1 Induces DNA Hypermethylation of PRC2 Targets, Blocks Myelomonocytic Differentiation, and Defines a Novel Subtype of AML Responsive to EZH2 Inhibition

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 780-780
Author(s):  
Daniel Thomas ◽  
Subarna Sinha ◽  
Linda Yu ◽  
Namyoung Jung ◽  
Bo Dai ◽  
...  

Abstract Wilms’ Tumor 1 is a transcription factor found to be recurrently mutated (WT1mut) in 10% of normal karyotype acute myeloid leukemia (NK-AML), predominantly in young adults with intermediate-poor prognosis, often in association with FLT3-ITD and high white cell count. Mutations are usually heterozygous and consist of small insertions or deletions clustered around exons 7 and 9, which encode zinc-finger DNA binding domains. In general, mutations disrupt these DNA binding domains leading to a truncated protein that may act in a dominant negative fashion. Currently, the mechanism by which WT1mut contributes to leukemogenesis is unknown, and no lead drug targets linked to this mutation have been identified to date. Using a novel computational method based on Boolean implications that link the presence of a somatic mutation to CpG methylation on a site-by-site basis, we found that mutation in WT1 is strongly linked to DNA hypermethylation in AML patient samples. In order to validate these findings, we expressed mutant WT1 protein prematurely truncated at exon 7 in THP-1 AML cells (confirmed to be wildtype for WT1 at both alleles), and after 10 passages we measured DNA methylation by 450K bead-chip arrays. We found consistent upregulation of DNA methylation in mutant but not wildtype WT1-expressing cells when compared to parental THP-1 cells, validating WT1 mutation as an active driver of DNA hypermethylation. Additional methylome analysis of human hematopoietic stem and progenitor compartments (HSPC) including (HSC, MPP, L-MPP, CMP, and GMP) indicated that WT1mut induces predominantly de novo DNA methylation, as virtually all CpG sites induced by the mutant protein are unmethylated in normal HSPC. Strikingly, the pattern of methylation in both WT1mut patient samples and WT1mut-THP-1 cells was enriched for polycomb repressor complex 2 (PRC2) target genes (p<1.6E-87), implicating a role for this repressive chromatin-remodelling complex in WT1mut leukemogenesis. In keeping with this, gene expression analysis of WT1mut AMLs (but not other normal karyotype AMLs) showed marked repression of known hematopoietic PRC2 target genes (as defined by Chip-Seq), suggesting WT1mut may induce a differentiation block through deregulation and hypermethylation of PRC2 targets. To explore this possibility, we expressed WT1mut in purified normal cord blood CD34+ HSPC using lentiviral transduction and performed in vitro liquid culture differentiation assays in IL-3, SCF, FLT3L, and GM-CSF. We found that WT1mut (but not wildtype or empty vector) induced a myelomonocytic differentiation block with fewer cells expressing CD11b, CD11c, and CD14. Separately, we also showed that WT1mut induced a differentiation block in a TF-1 cell model of erythroid differentiation. These findings suggest a role for WT1mut in perturbing myeloid differentiation in early HSPC. To test the therapeutic implications of our findings, we asked whether inhibition of the major enzymatic histone trimethylase component of PRC2, EZH2, could reverse the differentiation block caused by WT1mut. Significantly, we found that treatment of primary WT1mut AML blasts with the selective EZH2 inhibitor GSK-126 induced upregulation of the mature myeloid markers CD11b, CD33, and CD14. In contrast, NK-AML without WT1mut or acute promyleocytic leukemia cells did not show a significant differentiation response. Our results indicate that mutation in WT1 defines a novel subgroup of DNA hypermethyated AML with de novo hypermethylation of PRC2 target genes that may clinically respond to selective EZH2 inhibitors through differentiation. Importantly, our methods show that genome-wide analysis of mutation-specific DNA methylation patterns may have a future role in determining epigenetic therapies for personalized medicine. Disclosures No relevant conflicts of interest to declare.

2020 ◽  
Vol 117 (24) ◽  
pp. 13680-13688 ◽  
Author(s):  
Caroline Eozenou ◽  
Nitzan Gonen ◽  
Maria Sol Touzon ◽  
Anne Jorgensen ◽  
Svetlana A. Yatsenko ◽  
...  

Sex determination in mammals is governed by antagonistic interactions of two genetic pathways, imbalance in which may lead to disorders/differences of sex development (DSD) in human. Among 46,XX individuals with testicular DSD (TDSD) or ovotesticular DSD (OTDSD), testicular tissue is present in the gonad. Although the testis-determining geneSRYis present in many cases, the etiology is unknown in mostSRY-negative patients. We performed exome sequencing on 78 individuals with 46,XX TDSD/OTDSD of unknown genetic etiology and identified seven (8.97%) with heterozygous variants affecting the fourth zinc finger (ZF4) of Wilms’ tumor 1 (WT1) (p.Ser478Thrfs*17, p.Pro481Leufs*15, p.Lys491Glu, p.Arg495Gln [x3], p.Arg495Gly). The variants were de novo in six families (P= 4.4 × 10−6), and the incidence of WT1 variants in 46,XX DSD is enriched compared to control populations (P< 1.8 × 10−4). The introduction of ZF4 mutants into a human granulosa cell line resulted in up-regulation of endogenous Sertoli cell transcripts andWt1Arg495Gly/Arg495GlyXX mice display masculinization of the fetal gonads. The phenotype could be explained by the ability of the mutated proteins to physically interact with and sequester a key pro-ovary factor β-CATENIN, which may lead to up-regulation of testis-specific pathway. Our data show that unlike previous association of WT1 and 46,XY DSD, ZF4 variants of WT1 are a relatively common cause of 46,XX TDSD/OTDSD. This expands the spectrum of phenotypes associated with WT1 variants and shows that the WT1 protein affecting ZF4 can function as a protestis factor in an XX chromosomal context.


2010 ◽  
Author(s):  
Archana Chidambaram ◽  
Catherine Dumur ◽  
Timothy E. Vanmeter ◽  
Helen Fillmore ◽  
William C. Broaddus

1995 ◽  
Vol 15 (3) ◽  
pp. 1522-1535 ◽  
Author(s):  
W J Fredericks ◽  
N Galili ◽  
S Mukhopadhyay ◽  
G Rovera ◽  
J Bennicelli ◽  
...  

Alveolar rhabdomyosarcomas are pediatric solid tumors with a hallmark cytogenetic abnormality: translocation of chromosomes 2 and 13 [t(2;13) (q35;q14)]. The genes on each chromosome involved in this translocation have been identified as the transcription factor-encoding genes PAX3 and FKHR. The NH2-terminal paired box and homeodomain DNA-binding domains of PAX3 are fused in frame to COOH-terminal regions of the chromosome 13-derived FKHR gene, a novel member of the forkhead DNA-binding domain family. To determine the role of the fusion protein in transcriptional regulation and oncogenesis, we identified the PAX3-FKHR fusion protein and characterized its function(s) as a transcription factor relative to wild-type PAX3. Antisera specific to PAX3 and FKHR were developed and used to examine PAX3 and PAX3-FKHR expression in tumor cell lines. Sequential immunoprecipitations with anti-PAX3 and anti-FKHR sera demonstrated expression of a 97-kDa PAX3-FKHR fusion protein in the t(2;13)-positive rhabdomyosarcoma Rh30 cell line and verified that a single polypeptide contains epitopes derived from each protein. The PAX3-FKHR protein was localized to the nucleus in Rh30 cells, as was wild-type PAX3, in t(2;13)-negative A673 cells. In gel shift assays using a canonical PAX binding site (e5 sequence), we found that DNA binding of PAX3-FKHR was significantly impaired relative to that of PAX3 despite the two proteins having identical PAX DNA-binding domains. However, the PAX3-FKHR fusion protein was a much more potent transcriptional activator than PAX3 as determined by transient cotransfection assays using e5-CAT reporter plasmids. The PAX3-FKHR protein may function as an oncogenic transcription factor by enhanced activation of normal PAX3 target genes.


2021 ◽  
Author(s):  
Jean S Fain ◽  
Axelle Loriot ◽  
Anna Diacofotaki ◽  
Aurelie Van Tongelen ◽  
Charles De Smet

DNA methylation is an epigenetic mark associated with gene repression. It is now well established that tumor development involves alterations in DNA methylation patterns, which include both gains (hypermethylation) and losses (hypomethylation) of methylation marks in different genomic regions. The mechanisms underlying these two opposite, yet co-existing, alterations in tumors remain unclear. While studying the human MAGEA6/GABRA3 gene locus, we observed that DNA hypomethylation in tumor cells can lead to the activation of a long transcript (CT-GABRA3) that overlaps downstream promoters (GABRQ and GABRA3) and triggers their hypermethylation. Overlapped promoters displayed increases in H3K36me3, a histone mark known to be deposited during progression of the transcription machinery and to stimulate de novo DNA methylation. Consistent with such a processive mechanism, increases in H3K36me3 and DNA methylation were observed over the entire region covered by the CT-GABRA3 overlapping transcript. Importantly, experimental induction of CT-GABRA3 by depletion of DNMT1 DNA methyltransferase, resulted in a similar pattern of increased DNA methylation in the MAGEA6/GABRA3 locus. Bioinformatics analyses in lung cancer datasets identified other genomic loci displaying this process of coupled DNA hypo- and hypermethylation. In several of these loci, DNA hypermethylation affected tumor suppressor genes, e.g. RERG and PTPRO. Together, our work reveals that focal DNA hypomethylation in tumors can indirectly contribute to hypermethylation of nearby promoters through activation of overlapping transcription, and establishes therefore an unsuspected connection between these two opposite epigenetic alterations.


2017 ◽  
Author(s):  
Liyang Zhang ◽  
Gabriella D. Martini ◽  
H. Tomas Rube ◽  
Judith F. Kribelbauer ◽  
Chaitanya Rastogi ◽  
...  

ABSTRACTThe DNA-binding interfaces of the androgen (AR) and glucocorticoid (GR) receptors are virtually identical, yet these transcription factors share only about a third of their genomic binding sites and regulate similarly distinct sets of target genes. To address this paradox, we determined the intrinsic specificities of the AR and GR DNA binding domains using a refined version of SELEX-seq. We developed an algorithm, SelexGLM, that quantifies binding specificity over a large (31 bp) binding-site by iteratively fitting a feature-based generalized linear model to SELEX probe counts. This analysis revealed that the DNA binding preferences of AR and GR homodimers differ significantly, both within and outside the 15bp core binding site. The relative preference between the two factors can be tuned over a wide range by changing the DNA sequence, with AR more sensitive to sequence changes than GR. The specificity of AR extends to the regions flanking the core 15bp site, where isothermal calorimetry measurements reveal that affinity is augmented by enthalpy-driven readout of poly-A sequences associated with narrowed minor groove width. We conclude that the increased specificity of AR is correlated with more enthalpy-driven binding than GR. The binding models help explain differences in AR and GR genomic binding, and provide a biophysical rationale for how promiscuous binding by GR allows functional substitution for AR in some castration-resistant prostate cancers.


2021 ◽  
Vol 5 (1) ◽  
pp. e202101228
Author(s):  
Xiaokang Wang ◽  
Wojciech Rosikiewicz ◽  
Yurii Sedkov ◽  
Tanner Martinez ◽  
Baranda S Hansen ◽  
...  

DNA methylation at enhancers and CpG islands usually leads to gene repression, which is counteracted by DNA demethylation through the TET protein family. However, how TET enzymes are recruited and regulated at these genomic loci is not fully understood. Here, we identify TET2, the glycosyltransferase OGT and a previously undescribed proline and serine rich protein, PROSER1 as interactors of UTX, a component of the enhancer-associated MLL3/4 complexes. We find that PROSER1 mediates the interaction between OGT and TET2, thus promoting TET2 O-GlcNAcylation and protein stability. In addition, PROSER1, UTX, TET1/2, and OGT colocalize on many genomic elements genome-wide. Loss of PROSER1 results in lower enrichment of UTX, TET1/2, and OGT at enhancers and CpG islands, with a concomitant increase in DNA methylation and transcriptional down-regulation of associated target genes and increased DNA hypermethylation encroachment at H3K4me1-predisposed CpG islands. Furthermore, we provide evidence that PROSER1 acts as a more general regulator of OGT activity by controlling O-GlcNAcylation of multiple other chromatin signaling pathways. Taken together, this study describes for the first time a regulator of TET2 O-GlcNAcylation and its implications in mediating DNA demethylation at UTX-dependent enhancers and CpG islands and supports an important role for PROSER1 in regulating the function of various chromatin-associated proteins via OGT-mediated O-GlcNAcylation.


2020 ◽  
Vol 13 (S8) ◽  
Author(s):  
Tatyana A. Vasilyeva ◽  
Andrey V. Marakhonov ◽  
Marina E. Minzhenkova ◽  
Zhanna G. Markova ◽  
Nika V. Petrova ◽  
...  

Abstract Background Because of the significant occurrence of “WAGR-region” deletions among de novo mutations detected in congenital aniridia, DNA diagnosis is critical for all sporadic cases of aniridia due to its help in making an early diagnosis of WAGR syndrome. Standard cytogenetic karyotype study is a necessary step of molecular diagnostics in patients with deletions and in the patients’ parents as it reveals complex chromosomal rearrangements and the risk of having another affected child, as well as to provide prenatal and/or preimplantation diagnostics. Case presentation DNA samples were obtained from the proband (a 2-year-old boy) and his two healthy parents. Molecular analysis revealed a 977.065 kb deletion that removed loci of the ELP4, PAX6, and RCN1 genes but did not affect the coding sequence of the WT1 gene. The deletion occurred de novo on the paternal allele. The patient had normal karyotype 46,XY and a de novo pericentric inversion of chromosome 11, inv(11)(p13q14). Conclusions We confirmed the diagnosis of congenital aniridia at the molecular level. For the patient, the risk of developing Wilms’ tumor is similar to that in the general population. The recurrence risk for sibs in the family is low, but considering the possibility of gonadal mosaicism, it is higher than in the general population.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jean S. Fain ◽  
Axelle Loriot ◽  
Anna Diacofotaki ◽  
Aurélie Van Tongelen ◽  
Charles De Smet

AbstractTumor development involves alterations in DNA methylation patterns, which include both gains (hypermethylation) and losses (hypomethylation) in different genomic regions. The mechanisms underlying these two opposite, yet co-existing, alterations in tumors remain unclear. While studying the human MAGEA6/GABRA3 gene locus, we observed that DNA hypomethylation in tumor cells can lead to the activation of a long transcript (CT-GABRA3) that overlaps downstream promoters (GABRQ and GABRA3) and triggers their hypermethylation. Overlapped promoters displayed increases in H3K36me3, a histone mark deposited during transcriptional elongation and known to stimulate de novo DNA methylation. Consistent with such a processive mechanism, increases in H3K36me3 and DNA methylation were observed over the entire region covered by the CT-GABRA3 overlapping transcript. Importantly, experimental induction of CT-GABRA3 by depletion of DNMT1 DNA methyltransferase, resulted in a similar pattern of regional DNA hypermethylation. Bioinformatics analyses in lung cancer datasets identified other genomic loci displaying this process of coupled DNA hypo/hypermethylation, and some of these included tumor suppressor genes, e.g. RERG and PTPRO. Together, our work reveals that focal DNA hypomethylation in tumors can indirectly contribute to hypermethylation of nearby promoters through activation of overlapping transcription, and establishes therefore an unsuspected connection between these two opposite epigenetic alterations.


Development ◽  
1996 ◽  
Vol 122 (9) ◽  
pp. 2639-2650 ◽  
Author(s):  
S. Jun ◽  
C. Desplan

The Pax proteins are a family of transcriptional regulators involved in many developmental processes in all higher eukaryotes. They are characterized by the presence of a paired domain (PD), a bipartite DNA binding domain composed of two helix-turn-helix (HTH) motifs, the PAI and RED domains. The PD is also often associated with a homeodomain (HD) which is itself able to form homo- and hetero-dimers on DNA. Many of these proteins therefore contain three HTH motifs each able to recognize DNA. However, all PDs recognize highly related DNA sequences, and most HDs also recognize almost identical sites. We show here that different Pax proteins use multiple combinations of their HTHs to recognize several types of target sites. For instance, the Drosophila Paired protein can bind, in vitro, exclusively through its PAI domain, or through a dimer of its HD, or through cooperative interaction between PAI domain and HD. However, prd function in vivo requires the synergistic action of both the PAI domain and the HD. Pax proteins with only a PD appear to require both PAI and RED domains, while a Pax-6 isoform and a new Pax protein, Lune, may rely on the RED domain and HD. We propose a model by which Pax proteins recognize different target genes in vivo through various combinations of their DNA binding domains, thus expanding their recognition repertoire.


2020 ◽  
pp. jbc.RA120.015896
Author(s):  
Fabiana Passaro ◽  
Ilaria De Martino ◽  
Federico Zambelli ◽  
Giorgia Di Benedetto ◽  
Matteo Barbato ◽  
...  

The Yes-associated protein YAP, one of the major effectors of the Hippo pathway together with its related protein TAZ, mediates a range of cellular processes from proliferation and death to morphogenesis. YAP and TAZ regulate a large number of target genes, acting as co-activators of DNA-binding transcription factors or as negative regulators of transcription by interacting with the nucleosome remodeling and histone deacetylase complexes. YAP is expressed in self-renewing embryonic stem cells (ESCs), although it is still debated whether it plays any crucial roles in the control of either stemness or differentiation. Here we show that the transient downregulation of YAP in mouse ESCs perturbs cellular homeostasis, leading to the inability to differentiate properly. Bisulfite genomic sequencing revealed that this transient knockdown caused a genome-wide alteration of the DNA methylation remodeling that takes place during the early steps of differentiation, suggesting that the phenotype we observed might be due to the dysregulation of some of the mechanisms involved in regulation of ESC exit from pluripotency. By gene expression analysis we identified two molecules which could have a role in the altered genome-wide methylation profile: the long non-coding RNA Ephemeron, whose rapid upregulation is crucial for ESCs transition into epiblast, and the methyltransferase-like protein Dnmt3l, which, during the embryo development, cooperates with Dnmt3a and Dnmt3b to contribute to the de novo DNA methylation that governs early steps of ESC differentiation. These data suggest a new role for YAP in the governance of the epigenetic dynamics of exit from pluripotency.


Sign in / Sign up

Export Citation Format

Share Document