scholarly journals Transcriptional overlap links DNA hypomethylation with DNA hypermethylation at adjacent promoters in cancer

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jean S. Fain ◽  
Axelle Loriot ◽  
Anna Diacofotaki ◽  
Aurélie Van Tongelen ◽  
Charles De Smet

AbstractTumor development involves alterations in DNA methylation patterns, which include both gains (hypermethylation) and losses (hypomethylation) in different genomic regions. The mechanisms underlying these two opposite, yet co-existing, alterations in tumors remain unclear. While studying the human MAGEA6/GABRA3 gene locus, we observed that DNA hypomethylation in tumor cells can lead to the activation of a long transcript (CT-GABRA3) that overlaps downstream promoters (GABRQ and GABRA3) and triggers their hypermethylation. Overlapped promoters displayed increases in H3K36me3, a histone mark deposited during transcriptional elongation and known to stimulate de novo DNA methylation. Consistent with such a processive mechanism, increases in H3K36me3 and DNA methylation were observed over the entire region covered by the CT-GABRA3 overlapping transcript. Importantly, experimental induction of CT-GABRA3 by depletion of DNMT1 DNA methyltransferase, resulted in a similar pattern of regional DNA hypermethylation. Bioinformatics analyses in lung cancer datasets identified other genomic loci displaying this process of coupled DNA hypo/hypermethylation, and some of these included tumor suppressor genes, e.g. RERG and PTPRO. Together, our work reveals that focal DNA hypomethylation in tumors can indirectly contribute to hypermethylation of nearby promoters through activation of overlapping transcription, and establishes therefore an unsuspected connection between these two opposite epigenetic alterations.

2021 ◽  
Author(s):  
Jean S Fain ◽  
Axelle Loriot ◽  
Anna Diacofotaki ◽  
Aurelie Van Tongelen ◽  
Charles De Smet

DNA methylation is an epigenetic mark associated with gene repression. It is now well established that tumor development involves alterations in DNA methylation patterns, which include both gains (hypermethylation) and losses (hypomethylation) of methylation marks in different genomic regions. The mechanisms underlying these two opposite, yet co-existing, alterations in tumors remain unclear. While studying the human MAGEA6/GABRA3 gene locus, we observed that DNA hypomethylation in tumor cells can lead to the activation of a long transcript (CT-GABRA3) that overlaps downstream promoters (GABRQ and GABRA3) and triggers their hypermethylation. Overlapped promoters displayed increases in H3K36me3, a histone mark known to be deposited during progression of the transcription machinery and to stimulate de novo DNA methylation. Consistent with such a processive mechanism, increases in H3K36me3 and DNA methylation were observed over the entire region covered by the CT-GABRA3 overlapping transcript. Importantly, experimental induction of CT-GABRA3 by depletion of DNMT1 DNA methyltransferase, resulted in a similar pattern of increased DNA methylation in the MAGEA6/GABRA3 locus. Bioinformatics analyses in lung cancer datasets identified other genomic loci displaying this process of coupled DNA hypo- and hypermethylation. In several of these loci, DNA hypermethylation affected tumor suppressor genes, e.g. RERG and PTPRO. Together, our work reveals that focal DNA hypomethylation in tumors can indirectly contribute to hypermethylation of nearby promoters through activation of overlapping transcription, and establishes therefore an unsuspected connection between these two opposite epigenetic alterations.


2018 ◽  
Author(s):  
Aaron R Jeffries ◽  
Reza Maroofian ◽  
Claire G. Salter ◽  
Barry A. Chioza ◽  
Harold E. Cross ◽  
...  

AbstractGermline mutations in fundamental epigenetic regulatory molecules including DNA methyltransferase 3A (DNMT3A) are commonly associated with growth disorders, whereas somatic mutations are often associated with malignancy. We profiled genome-wide DNA methylation patterns in DNMT3A c.2312G>A; p.(Arg771Gln) carriers in a large Amish sibship with Tatton-Brown-Rahman syndrome (TBRS), their mosaic father and 15 TBRS patients with distinct pathogenic de novo DNMT3A variants. This defined widespread DNA hypomethylation at specific genomic sites enriched at locations annotated to genes involved in morphogenesis, development, differentiation, and malignancy predisposition pathways. TBRS patients also displayed highly accelerated DNA methylation aging. Notably, these findings were most striking in a carrier of the AML associated driver mutation p.Arg882Cys. Our studies additionally defined phenotype related accelerated and decelerated epigenetic aging in two histone methyltransferase disorders; NSD1 Sotos syndrome overgrowth disorder and KMT2D Kabuki syndrome growth impairment. Together, our findings provide fundamentally new insights into aberrant epigenetic mechanisms, the role of epigenetic machinery maintenance and determinants of biological aging in these growth disorders.


Endocrinology ◽  
2009 ◽  
Vol 150 (10) ◽  
pp. 4681-4691 ◽  
Author(s):  
Aparna Mahakali Zama ◽  
Mehmet Uzumcu

Abstract Exposure to endocrine-disrupting chemicals during development could alter the epigenetic programming of the genome and result in adult-onset disease. Methoxychlor (MXC) and its metabolites possess estrogenic, antiestrogenic, and antiandrogenic activities. Previous studies showed that fetal/neonatal exposure to MXC caused adult ovarian dysfunction due to altered expression of key ovarian genes including estrogen receptor (ER)-β, which was down-regulated, whereas ERα was unaffected. The objective of the current study was to evaluate changes in global and gene-specific methylation patterns in adult ovaries associated with the observed defects. Rats were exposed to MXC (20 μg/kg·d or 100 mg/kg·d) between embryonic d 19 and postnatal d 7. We performed DNA methylation analysis of the known promoters of ERα and ERβ genes in postnatal d 50–60 ovaries using bisulfite sequencing and methylation-specific PCRs. Developmental exposure to MXC led to significant hypermethylation in the ERβ promoter regions (P < 0.05), whereas the ERα promoter was unaffected. We assessed global DNA methylation changes using methylation-sensitive arbitrarily primed PCR and identified 10 genes that were hypermethylated in ovaries from exposed rats. To determine whether the MXC-induced methylation changes were associated with increased DNA methyltransferase (DNMT) levels, we measured the expression levels of Dnmt3a, Dnmt3b, and Dnmt3l using semiquantitative RT-PCR. Whereas Dnmt3a and Dnmt3l were unchanged, Dnmt3b expression was stimulated in ovaries of the 100 mg/kg MXC group (P < 0.05), suggesting that increased DNMT3B may cause DNA hypermethylation in the ovary. Overall, these data suggest that transient exposure to MXC during fetal and neonatal development affects adult ovarian function via altered methylation patterns.


2020 ◽  
Vol 48 (7) ◽  
pp. 3949-3961 ◽  
Author(s):  
Chien-Chu Lin ◽  
Yi-Ping Chen ◽  
Wei-Zen Yang ◽  
James C K Shen ◽  
Hanna S Yuan

Abstract DNA methyltransferases are primary enzymes for cytosine methylation at CpG sites of epigenetic gene regulation in mammals. De novo methyltransferases DNMT3A and DNMT3B create DNA methylation patterns during development, but how they differentially implement genomic DNA methylation patterns is poorly understood. Here, we report crystal structures of the catalytic domain of human DNMT3B–3L complex, noncovalently bound with and without DNA of different sequences. Human DNMT3B uses two flexible loops to enclose DNA and employs its catalytic loop to flip out the cytosine base. As opposed to DNMT3A, DNMT3B specifically recognizes DNA with CpGpG sites via residues Asn779 and Lys777 in its more stable and well-ordered target recognition domain loop to facilitate processive methylation of tandemly repeated CpG sites. We also identify a proton wire water channel for the final deprotonation step, revealing the complete working mechanism for cytosine methylation by DNMT3B and providing the structural basis for DNMT3B mutation-induced hypomethylation in immunodeficiency, centromere instability and facial anomalies syndrome.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Shir Toubiana ◽  
Miriam Gagliardi ◽  
Mariarosaria Papa ◽  
Roberta Manco ◽  
Maty Tzukerman ◽  
...  

DNA methyltransferase 3B (DNMT3B) is the major DNMT that methylates mammalian genomes during early development. Mutations in human DNMT3B disrupt genome-wide DNA methylation patterns and result in ICF syndrome type 1 (ICF1). To study whether normal DNA methylation patterns may be restored in ICF1 cells, we corrected DNMT3B mutations in induced pluripotent stem cells from ICF1 patients. Focusing on repetitive regions, we show that in contrast to pericentromeric repeats, which reacquire normal methylation, the majority of subtelomeres acquire only partial DNA methylation and, accordingly, the ICF1 telomeric phenotype persists. Subtelomeres resistant to de novo methylation were characterized by abnormally high H3K4 trimethylation (H3K4me3), and short-term reduction of H3K4me3 by pharmacological intervention partially restored subtelomeric DNA methylation. These findings demonstrate that the abnormal epigenetic landscape established in ICF1 cells restricts the recruitment of DNMT3B, and suggest that rescue of epigenetic diseases with genome-wide disruptions will demand further manipulation beyond mutation correction.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2539-2539
Author(s):  
Maximilian Schmutz ◽  
Manuela Zucknick ◽  
Richard F. Schlenk ◽  
Konstanze Döhner ◽  
Hartmut Döhner ◽  
...  

Abstract Deregulated epigenetic mechanisms have been identified as major components of acute myeloid leukemia (AML) pathogenesis. This improved mechanistic understanding has started to translate into clinics and leads to the development of novel therapeutic options as exemplified by the DNA methyltransferase (DNMT) inhibitors 5-azacytidine (5-azaC) and decitabine (DAC). However, biomarkers for response prediction to epigenetic therapy are urgently needed. Recently, we and others demonstrated that in-depth characterization of leukemia-associated DNA-methylation patterns contributes to refinement of the molecular classification and of prognostication in AML. Thus, disease associated methylation patterns might also harbor predictive relevance for identification of patients who will profit from DNMT inhibitor therapy and for support of therapeutic decision making. In order to identify a DNA methylation based response predictor, we applied a two-step strategy and generated genome-wide profiles underlying response and resistance to a combination chemotherapy applied within the AMLSG 12-09 Study (ClinicalTrials.gov Identifier: NCT01180322) comprising the drugs idarubicin and etoposide plus the demethylating agent 5-azaC as induction therapy. By methylated-CpG immune-precipitation and next generation sequencing (MCIp-seq), we generated DNA methylation profiles of responders (n=12) and non-responders (n=23). A supervised empirical Bayes approach for the analysis of sequencing read count data (“edgeR”) was applied to identify differentially methylated regions (DMRs) associated with 5-azaC response. We identified 550 genomic regions (based on 500 bp binning) that exposed highly significant read count differences indicating differential DNA methylation between both patient groups. The GC content distribution within the identified differentially methylated regions (DMRs) was comparable to the entire genome. 14% of the DMRs were located in gene promoter regions, 60% in intragenic and 26% in intergenic regions. Overall, the detected DMRs were considerably enriched in the vicinity of transcriptional start sites and preferentially targeted genes acting as transcriptional regulators (including transcription factors involved in hematopoiesis). Within the set of 550 DMRs, we selected the 40 most significantly discriminating regions and validated them with quantitative DNA methylation data from the Illumina Infinium® HumanMethylation450 Bead Chip. 25% of the selected DMRs were covered by only one probe whereas the majority was covered by up to six probes totaling in 107 probes (CpGs). We detected a good correlation between MCIp-seq und 450k-derived methylation data for each patient (median Spearman’s rho = 0.69, 95%-CI [0.32, 0.87]) and could validate 90% of DMRs via quantitative 450k array data. Comprising 95 probes, these validated DMRs were used to create a multivariable signature for therapy response prediction. Through a penalized logistic regression model (“elastic-net”-penalty) applied to the 450k M-values in our discovery sample set, we identified a signature containing 17 probes (CpGs) associated with 12 genes which predicted response perfectly. Four of the identified CpGs were located in promoters, 11 in intragenic and two in intergenic regions. Among the genes targeted by differential methylation in our signature, we found WNT10A, a component of the WNT-beta-catenin-TCF signaling pathway, and PKMYT1. The latter one is a membrane-associated serine/threonine protein kinase which is regulated by polo-like kinase 1. Its inhibition has been reported recently to sensitize for cytarabine-mediated toxicity in vitro. Furthermore, two DMRs associated with the promoters of miRNAs (miR-3154, miR-3186) were contained in the signature. In summary, by genome-wide screening approaches, we identified differentially methylated genes and genomic regions that are associated with response to treatment regimens containing the DNMT inhibitor 5-azaC. At the same time, the predictive DMRs also harbor high potential to be functionally linked to molecular mechanisms and pathways involved in therapy response. By variable selection, we created a minimal signature that accurately predicts response in our discovery sample set. Further validation of this response-signature in independent cohorts of AML cases also comprising patients treated with decitabine are underway. Disclosures: Schlenk: Celgene: Honoraria, Research Funding; Pfizer: Honoraria, Research Funding; Chugai: Research Funding; Amgen: Research Funding; Novartis: Research Funding; Ambit: Honoraria.


2019 ◽  
Vol 47 (4) ◽  
pp. 997-1003 ◽  
Author(s):  
Huiming Zhang ◽  
Kang Zhang ◽  
Jian-Kang Zhu

Abstract DNA methylation at the fifth position of cytosine is a major epigenetic mark conserved in plants and mammals. Genome-wide DNA methylation patterns are dynamically controlled by integrated activities of establishment, maintenance, and removal. In both plants and mammals, a pattern of global DNA hypomethylation coupled with increased methylation levels at some specific genomic regions arises at specific developmental stages and in certain abnormal cells, such as mammalian aging cells and cancer cells as well as some plant epigenetic mutants. Here we provide an overview of this distinct DNA methylation pattern in mammals and plants, and propose that a methylstat, which is a cis-element responsive to both DNA methylation and active demethylation activities and controlling the transcriptional activity of a key DNA methylation regulator, can help to explain the enigmatic DNA methylation patterns in aging cells and cancer cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Roza H. Ali Masalmeh ◽  
Francesca Taglini ◽  
Cristina Rubio-Ramon ◽  
Kamila I. Musialik ◽  
Jonathan Higham ◽  
...  

AbstractThe aberrant gain of DNA methylation at CpG islands is frequently observed in colorectal tumours and may silence the expression of tumour suppressors such as MLH1. Current models propose that these CpG islands are targeted by de novo DNA methyltransferases in a sequence-specific manner, but this has not been tested. Using ectopically integrated CpG islands, here we find that aberrantly methylated CpG islands are subject to low levels of de novo DNA methylation activity in colorectal cancer cells. By delineating DNA methyltransferase targets, we find that instead de novo DNA methylation activity is targeted primarily to CpG islands marked by the histone modification H3K36me3, a mark associated with transcriptional elongation. These H3K36me3 marked CpG islands are heavily methylated in colorectal tumours and the normal colon suggesting that de novo DNA methyltransferase activity at CpG islands in colorectal cancer is focused on similar targets to normal tissues and not greatly remodelled by tumourigenesis.


2020 ◽  
Author(s):  
D Kaplun ◽  
G Filonova ◽  
Y. Lobanova ◽  
A Mazur ◽  
S Zhenilo

ABSTRACTGain and loss of DNA methylation in cells is a dynamic process that tends to achieve an equilibrium. Many factors are involved in maintaining the balance between DNA methylation and demethylation. Previously, it was shown that methyl-DNA protein Kaiso may attract NcoR, SMRT repressive complexes affecting histone modifications. On the other hand, the deficiency of Kaiso resulted in slightly reduced methylation of ICR in H19/Igf2 locus and Oct4 promoter in mouse embryonic fibroblasts. However, nothing is known whether Kaiso may attract DNA methyltransferase to influence DNA methylation level. The main idea of this work is that Kaiso may lead to DNA hypermethylation attracting de novo DNA methyltransferases. We demonstrated that Kaiso regulates TRIM25 promoter methylation. It can form a complex with DNMT3b. BTB/POZ domain of Kaiso and ADD domain of DNA methyltransferase are essential for complex formation. Thus, Kaiso can affect DNA methylation.


2018 ◽  
Author(s):  
Tanja Božić ◽  
Joana Frobel ◽  
Annamarija Raic ◽  
Fabio Ticconi ◽  
Chao-Chung Kuo ◽  
...  

AbstractThede novoDNA methyltransferase 3A (DNMT3A) plays pivotal roles in hematopoietic differentiation. In this study, we followed the hypothesis that alternative splicing ofDNMT3Ahas characteristic epigenetic and functional sequels. SpecificDNMT3Atranscripts were either downregulated or overexpressed in human hematopoietic stem and progenitor cells and this resulted in complementary and transcript-specific DNA methylation and gene expression changes. Functional analysis indicated that particularly transcript 2 (coding for DNMT3A2) activates proliferation and induces loss of a primitive immunophenotype, whereas transcript 4 interferes with colony formation of the erythroid lineage. Notably, in acute myeloid leukemia (AML) expression of transcript 2 correlates with itsin vitroDNA methylation and gene expression signatures and is associated with overall survival, indicating thatDNMT3Avariants impact also on malignancies. Our results demonstrate that specificDNMT3Avariants have distinct epigenetic and functional impact. Particularly DNMT3A2 triggers hematopoietic differentiation and the corresponding signatures are reflected in AML.


Sign in / Sign up

Export Citation Format

Share Document