scholarly journals Prothrombin Membrane Binding and Gla-Dependent Function Are Not Required for Effective Hemostasis In Vivo

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 124-124
Author(s):  
Lindsey A. Greene ◽  
Nabil K. Thalji ◽  
Harlan Bradford ◽  
Sriram Krishnaswamy ◽  
Rodney M. Camire

Abstract Prothrombin, like other vitamin K-dependent coagulation factors, undergoes γ-carboxylation of its Gla domain, a posttranslational modification critical for membrane binding. In patients on anticoagulant treatment with warfarin, the INR has historically been correlated with the degree of des-gamma-carboxy-prothrombin (DCP or PIVKA-II). PIVKA-II can be measured readily and used as a marker for vitamin K deficiency or warfarin therapy and is thought to be useful in detecting subclinical disease. Long-standing dogma suggests prothrombin γ-carboxylation is necessary for prothrombin membrane binding facilitating engagement with prothrombinase leading to rapid thrombin generation and effective hemostasis. However, recent studies indicate that despite an inability to bind membranes, uncarboxylated (desGla) full-length prothrombin demonstrated an unexpected modest decrease in the rate of thrombin generation (J Biol Chem 2013, 288:27789-800). Thus, it is possible loss of prothrombin γ-carboxylation, and thereby membrane binding, is far less significant for prothrombin activation than previously appreciated. Instead warfarin's effect on other coagulation factors (FX, FIX, and FVII) may be the primary causative determinant impairing hemostasis in these anticoagulated patients. To test these ideas, we first analyzed thrombin generation using recombinant full-length fully carboxylated and desGla prothrombin in vitro. Human prothrombin deficient plasma (Factor II activity <4%) was reconstituted to normal levels (100 μg/mL) with desGla or carboxylated prothrombin. DesGla prothrombin generated approximately half the amount of thrombin observed in carboxylated prothrombin plasma and normal human plasma controls. We next analyzed full-length desGla prothrombin's in vivo hemostatic function. A prothrombin anti-sense oligonucleotide (ASO) was administered to hemostatically normal mice to knock down endogenous murine prothrombin expression (<0.1-1μg/mL, 0.1-1%) and confirmed by ELISA analysis. Hemostasis was analyzed by the ferric chloride (FeCl3) carotid artery injury model. In mice treated with an ASO control, vessel occlusion occurred at approximately 8 minutes while mice treated with the prothrombin ASO did not clot during the 30-minute post injury observation period. In additional experiments two minutes following injury, prothrombin ASO treated mice were administered either carboxylated or desGla recombinant prothrombin to restore plasma concentrations to the normal range (100 μg/mL). Remarkably, administration of either desGla or carboxylated prothrombin restored vessel occlusion to ASO control findings, with minimal variability observed between desGla and carboxylated prothrombin treated mice (Figure 1). Warfarin treatment results in impaired prothrombin γ-carboxylation. However, if prothrombin γ-carboxylation, is, in fact, not necessary for prothrombin activation, fully carboxylated Factor Xa (FXa) should reverse the effects of warfarin by efficiently activating the un/under-carboxylated prothrombin thereby bypassing the other warfarin-affected factors. To study this, we used a "zymogen-like" factor Xa (FXaI16L) molecule previously developed by our group (Nat. Biotech 2011, 29:1028-33) that has a greater half-life than the wild-type protein. In thrombin generation assays, addition of 1nM FXaI16L to plasma from patients anticoagulated with warfarin, irrespective on INR (2.8, 4,4 7.1), resulted in thrombin generation comparable to that of normal human plasma. Importantly, similar results were obtained in vivo in warfarin-anticoagulated mice (INR 2-3). Administration of 3 mg/kg FXaI16L to 8 out of 8 warfarin mice corrected the time to carotid artery occlusion in the FeCl3 injury model. In two separate in vitro and in vivo model systems, we demonstrated that prothrombin membrane binding is not absolutely required for thrombin generation. Thrombin is unique among the coagulation serine proteases in that it does not have a Gla domain once fully processed by prothrombinase; thus, the absence of a Gla domain in the protease (thrombin) may explain the lack of a requirement for membrane binding by the zymogen (prothrombin) precursor. Our findings may also have clinical relevance, since they suggest that FXa (or a variant) could be used as a novel warfarin bypass strategy to rapidly achieve hemostasis in the setting of warfarin anticoagulation. Figure 1. Figure 1. Disclosures Greene: Baxter: Research Funding. Camire:Spark Therapeutics: Membership on an entity's Board of Directors or advisory committees; Pfizer: Consultancy, Patents & Royalties, Research Funding; NovoNordisk: Research Funding.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3632-3632
Author(s):  
Jevgenia Zilberman-Rudenko ◽  
Hiroshi Deguchi ◽  
Mohammed Hayat ◽  
Meenal Shukla ◽  
Jennifer Nagrampa Orje ◽  
...  

Thrombin generation and fibrin formation can cause occlusive thrombosis and myocardial infarction is caused by occlusive thrombi. Exposure and release of cardiac myosin (CM) are linked to myocardial infarction, but CM has not been accorded any thrombotic functional significance. Skeletal muscle myosin (SkM), which is structurally similar to CM, was previously shown to exert procoagulant activities (Deguchi H et al, Blood. 2016;128:1870), leading us to undertake new studies of the in vitro and in vivo procoagulant activities of CM. First, the setting of hemophilia A with its remarkable bleeding risk was used to evaluate the procoagulant properties of CM. In studies of human hemophilia plasma and of murine acquired hemophilia A plasma, CM was added to these plasmas and tissue factor (TF)-induced thrombin generation assays were performed. Plasmas included human hemophilia A plasma and C57BL/6J mouse plasma with anti-FVIII antibody (GMA-8015; 5 microgram/mL final). CM showed strong procoagulant effects in human hemophilia A plasma, which is naturally deficient in factor VIII (&lt;1% FVIII). The addition of only CM (12.5-200 nM) greatly increased thrombin generation in a manner comparable to addition of only recombinant FVIII. In the wild-type C57BL/6J mouse plasma, anti-FVIII antibody greatly reduced TF-induced thrombin generation, as reported. When CM (12.5-200 nM) was added to mouse plasma containing anti-FVIII antibodies, TF-induced thrombin generation was concentration-dependently restored. To study the in vivo hemostatic ability of SkM, an acquired hemophilia A mouse model was employed. Intravenous injection of anti-FVIII antibody (GMA-8015; 0.25 mg/kg) or control vehicle was given retro-orbitally to wild type C57BL/6J mice at 2 hours prior to tail cutting. The distal portion of the tail was surgically removed at 1.5 mm tail diameter to induce moderate bleeding. Tails were immersed in 50 mL of saline at 37 degrees. Total blood loss was measured as the blood volume collected during 20 min normalized for mouse weight (microL/g). Mice given only anti-FVIII antibody had more blood loss (median = 6.7 microL/g) compared to control mice (median &lt; 2 microL/g) (Figure). In this mouse model receiving anti-FVIII antibody, CM (5.4 mg/kg) injected at 15 min prior to tail cutting significantly reduced the median blood loss from 6.7 to 2.0 and 3.2 microL/g, respectively (p &lt; 0.001 for each myosin) (Figure). Thus, these studies provide in vivo proof of concept that both CM and SkM can reduce bleeding and are procoagulant in vivo. Second, studies of the effects of CM on thrombogenesis ex vivo using fresh human flowing blood showed that perfusion of blood over CM-coated surfaces at 300 s-1 shear rate caused extensive fibrin deposition. Addition of CM to blood also promoted the thrombotic responses of human blood flowing over collagen-coated surfaces, evidence of CM's thrombogenicity. Further studies showed that CM enhanced thrombin generation in platelet rich plasma and platelet poor plasma, indicating that CM promotes thrombin generation in plasma primarily independently of platelets. To address the mechanistic insights for CM's procoagulant activity, purified coagulation factors were employed. In a purified system composed of factor Xa, factor Va, prothrombin and calcium ions, CM greatly enhanced prothrombinase activity. Experiments using Gla-domainless factor Xa showed that the Gla domain of factor Xa was not required for CM's prothrombinase enhancement in contrast to phospholipid-enhanced prothrombinase activity which requires that Gla domain. Binding studies showed that CM directly binds factor Xa. In summary, here we show that CM is procoagulant due to its ability to bind factor Xa and strongly promote thrombin generation. In summary, CM acts as procoagulant by its ability to bind factor Xa and strongly promote thrombin generation both in vivo an in vitro. These provocative findings raise many questions about whether and how the protective pro-hemostatic properties or the pathogenic prothrombotic properties of CM contribute to pathophysiology in the coronary circulation. This discovery raises many questions about CM and coronary pathophysiology, and future CM research may enable novel translations of new knowledge regarding CM's procoagulant activities for coronary health and disease. Figure Disclosures Mosnier: The Scripps Research Institute: Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Ruggeri:MERU-VasImmune Inc.: Equity Ownership, Other: CEO and Founder.


1998 ◽  
Vol 79 (05) ◽  
pp. 1041-1047 ◽  
Author(s):  
Kathleen M. Donnelly ◽  
Michael E. Bromberg ◽  
Aaron Milstone ◽  
Jennifer Madison McNiff ◽  
Gordon Terwilliger ◽  
...  

SummaryWe evaluated the in vivo anti-metastatic activity of recombinant Ancylostoma caninum Anticoagulant Peptide (rAcAP), a potent (Ki = 265 pM) and specific active site inhibitor of human coagulation factor Xa originally isolated from bloodfeeding hookworms. Subcutaneous injection of SCID mice with rAcAP (0.01-0.2 mg/mouse) prior to tail vein injection of LOX human melanoma cells resulted in a dose dependent reduction in pulmonary metastases. In order to elucidate potential mechanisms of rAcAP’s anti-metastatic activity, experiments were carried out to identify specific interactions between factor Xa and LOX. Binding of biotinylated factor Xa to LOX monolayers was both specific and saturable (Kd = 15 nM). Competition experiments using antibodies to previously identified factor Xa binding proteins, including factor V/Va, effector cell protease receptor-1, and tissue factor pathway inhibitor failed to implicate any of these molecules as significant binding sites for Factor Xa. Functional prothrombinase activity was also supported by LOX, with a half maximal rate of thrombin generation detected at a factor Xa concentration of 2.4 nM. Additional competition experiments using an excess of either rAcAP or active site blocked factor Xa (EGR-Xa) revealed that most of the total factor Xa binding to LOX is mediated via interaction with the enzyme’s active site, predicting that the vast majority of cell-associated factor Xa does not participate directly in thrombin generation. In addition to establishing two distinct mechanisms of factor Xa binding to melanoma, these data raise the possibility that rAcAP’s antimetastatic effect in vivo might involve novel non-coagulant pathways, perhaps via inhibition of active-site mediated interactions between factor Xa and tumor cells.


Blood ◽  
2009 ◽  
Vol 114 (2) ◽  
pp. 452-458 ◽  
Author(s):  
Dmitri V. Kravtsov ◽  
Anton Matafonov ◽  
Erik I. Tucker ◽  
Mao-fu Sun ◽  
Peter N. Walsh ◽  
...  

Abstract During surface-initiated blood coagulation in vitro, activated factor XII (fXIIa) converts factor XI (fXI) to fXIa. Whereas fXI deficiency is associated with a hemorrhagic disorder, factor XII deficiency is not, suggesting that fXI can be activated by other mechanisms in vivo. Thrombin activates fXI, and several studies suggest that fXI promotes coagulation independent of fXII. However, a recent study failed to find evidence for fXII-independent activation of fXI in plasma. Using plasma in which fXII is either inhibited or absent, we show that fXI contributes to plasma thrombin generation when coagulation is initiated with low concentrations of tissue factor, factor Xa, or α-thrombin. The results could not be accounted for by fXIa contamination of the plasma systems. Replacing fXI with recombinant fXI that activates factor IX poorly, or fXI that is activated poorly by thrombin, reduced thrombin generation. An antibody that blocks fXIa activation of factor IX reduced thrombin generation; however, an antibody that specifically interferes with fXI activation by fXIIa did not. The results support a model in which fXI is activated by thrombin or another protease generated early in coagulation, with the resulting fXIa contributing to sustained thrombin generation through activation of factor IX.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3489-3489
Author(s):  
Giulia Pavani ◽  
Lacramioara Ivanciu ◽  
Katherine A. Stafford ◽  
Paris Margaritis

Abstract The human protein C (PC) interaction with the endothelial PC receptor (EPCR) is mediated through the PC Gla domain, via key amino acids Phe4 and Leu8. Specifically, substitution of Leu8 with Val from human prothrombin abolishes the PC-EPCR interaction. The Gla domain of human Factor VII (FVII) shares these positions with PC and, consequently, the EPCR binding capacity. In the mouse, a commonly used in vivo model, the sequence determinants of the Gla domain of mouse PC (mPC) interaction with mouse EPCR (mEPCR) are not known. Remarkably, mouse FVII (mFVII) and its activated form (mFVIIa) have poor affinity for mouse EPCR. We previously described a variant of mFVIIa (mFVIIa-FMR) that contained the Leu4->Phe, Leu8->Met and Trp9->Arg from the mPC Gla domain. We found that this molecule was functionally similar to mFVIIa and could bind mEPCR. Using mFVIIa-FMR as surrogate to study the mPC-mEPCR interaction, we highlighted the importance of the Phe4/Met8/Arg9 in the mPC-mEPCR interaction. We also found that mFVIIa-FMR had enhanced hemostatic properties when infused at 3 mg/kg after FeCl3 carotid artery injury in hemophilic mice (vessel occlusion was 2.5 times faster than mFVIIa). In order to further refine whether the mEPCR binding capacity of mPC is coordinated by any/all of Phe4/Met8/Arg9 positions, we previously generated single variants of mPC at these positions using the corresponding amino acids of mFVIIa (that has poor interaction with mEPCR). We found that Phe4 is the sole determinant of specificity of the mPC-mEPCR interaction. Moreover, when Phe4 was placed in mFVIIa, we found that mFVIIa-Phe4 had activity similar to mFVIIa and bound mEPCR on cells (or in solution to soluble mEPCR) with a Kd of ~350nM. This was of similar magnitude to the mEPCR affinity of a mFVIIa variant with the entire mPC Gla domain (~200 nM), indirectly suggesting that Phe4 determines both the specificity and affinity of mPC to mEPCR. Since mFVIIa-FMR showed improved hemostatic properties in vivo as a result of mEPCR binding, enhancing the EPCR-FVIIa binding may generate improved human FVIIa molecules for the treatment of bleeding. Here we wanted to provide proof-of-concept using limited Gla domain modifications. For this, we utilized mFVIIa-Phe4, a minimally modified mFVIIa molecule, described above. Specifically, hemophilia B animals were subjected to a 7.5% FeCl3 injury of their carotid artery for 2 minutes; after 10 minutes mice were infused with 3 mg/kg of mFVIIa or mFVIIa-Phe4. Time to vessel occlusion was determined by monitoring blood flow. Hemostatically normal mice occluded in 13.3 ± 3.0 min. We found that infusion of mFVIIa resulted in vessel occlusion at 8.9 ± 1.7 min. However, mice that received mFVIIa-Phe4 reached vessel occlusion within 4.5 ± 2.4 min, ~2.5 times faster than mFVIIa-infused mice (P<0.01). This was similar to that we previously observed with mFVIIa-FMR infusion after injury in hemophilia B mice. Our results suggest the following: (1) Phe4 in the mPC Gla domain confers the specificity and affinity to mEPCR; (2) a single Phe4 substitution in mFVIIa is the only requirement for enhancing its clotting function in vivo. These data reveal another difference between human and mouse systems that may affect EPCR-dependent functions of other vitamin K-dependent proteins. Moreover, our results suggest the possibility that minimally modified variants of FVIIa with respect to EPCR binding may have more favorable hemostatic properties for clinical use. Disclosures Ivanciu: Bayer Hemophilia Awards Program: Research Funding. Margaritis:Novo Nordisk A/S: Research Funding; Bayer Hemophilia Awards Program: Research Funding.


2020 ◽  
Vol 26 ◽  
pp. 107602962096082
Author(s):  
Dalia Qneibi ◽  
Eduardo Ramacciotti ◽  
Ariane Scarlatelli Macedo ◽  
Roberto Augusto Caffaro ◽  
Leandro Barile Agati ◽  
...  

Low molecular weight heparins (LMWH) represent depolymerized heparin prepared by various methods that exhibit differential, biochemical and pharmacological profiles. Enoxaparin is prepared by benzylation followed by alkaline depolymerization of porcine heparin. Upon the expiration of its patent, several biosimilar versions of enoxaparin have become available. Heparinox (Sodic enoxaparine; Cristália Produtos Químicos Farmacêuticos LTDA, Sao Paulo, Brazil) is a new biosimilar form of enoxaparin. We assessed the molecular weight and the biochemical profile of Heparinox and compared its properties to the original branded enoxaparin (Lovenox; Sanofi, Paris, France). Clotting profiles compared included activated clotting time, activated partial thromboplastin time (aPTT), and thrombin time (TT). Anti-protease assays included anti-factor Xa and anti-factor IIa activities. Thrombin generation was measured using a calibrated automated thrombogram and thrombokinetic profile included peak thrombin, lag time and area under the curve. USP potency was determined using commercially available assay kits. Molecular weight profiling was determined using high performance liquid chromatography. We determined that Heparinox and Lovenox were comparable in their molecular weight profile. Th anticoagulant profile of the branded and biosimilar version were also similar in the clot based aPTT and TT. Similarly, the anti-Xa and anti-IIa activities were comparable in the products. No differences were noted in the thrombin generation inhibitory profile of the branded and biosimilar versions of enoxaparin. Our studies suggest that Heparinox is bioequivalent to the original branded enoxaparin based upon in vitro tests however will require further in vivo studies in animal models and humans to determine their clinical bioequivalence.


1995 ◽  
Vol 74 (06) ◽  
pp. 1474-1477 ◽  
Author(s):  
J C Lormeau ◽  
J P Herault

SummaryThe inhibition of thrombin generation (TG) was studied in plasma from human volunteers after single subcutaneous administrations of 4000, 8000 or 12,000 anti-Xa units (i.e., 6, 12 or 18 mg) of the synthetic pentasaccharide (SR 90107/ORG 31540) (SP).SP impaired TG in plasma for up to 18 h after injection, and the time-courses of TG and factor Xa inhibitions were similar.In untreated plasma supplemented in vitro with SP to obtain the same anti-Xa activity as in ex vivo samples, equivalent TG inhibitions were observed thus showing that no transformed SP molecules were involved in the TG inhibition ex vivo.Functional as well as immunological assay of TFPI indicated that subcutaneous injection of 12,000 anti-Xa units of SP did not induce any TFPI release, whereas under the same conditions, 13,000 IU of Fraxiparine® produced a significant rise of TFPI in plasma.The plotting of TG inhibition versus SP concentration could be fitted with a good correlation (r = 0,94) to the graphical representation linking [ATIII-SP] to [SP].These results demonstrate that following subcutaneous administration to man, SP inhibits TG ex vivo and likely in vivo exclusively through the same selective ATIII-mediated inhibition of factor Xa as the one elicited in vitro.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3629-3629
Author(s):  
Juliana Small ◽  
Shannon Zintner ◽  
Lynn E Dankner ◽  
Paris Margaritis

The endothelial protein C receptor (EPCR) has been demonstrated to bind activated FVII (FVIIa) through the Gla domain with equal affinity to Protein C (PC). Mouse studies suggest that EPCR is involved in the extravasation of infused human FVIIa, leading to an extended extravascular tissue persistence, longer than expected based on its circulating half-life. This provides a plausible explanation for the long-term benefits of hemophilic patients on human FVIIa prophylaxis. Collectively, these data suggest that EPCR sequesters administered FVIIa in tissues where it may have a hemostatic effect. However, the role of the endogenous FVII-EPCR interaction in normal conditions is largely unknown. For this, we have developed a mouse model to better understand this interaction in vivo. Endogenous mouse FVII and FVIIa (mFVII/FVIIa) do not bind mouse EPCR. However, our laboratory has demonstrated that L4F, L8M, and T9R substitutions in the Gla domain of mFVIIa enable its interaction with mouse EPCR while retaining full enzymatic activity in vitro. Based on that data, we utilized CRISPR/Cas9 technology to knock-in L4F, L8M, and T9R into the mFVII Gla domain in the mouse F7 locus (F7FMR), thereby developing mice with a chimeric endogenous FVII capable of binding EPCR. Founder animals were generated and capable of producing offspring, indicating that the gain-of-function in mFVII was compatible with life. Animals were subsequently backcrossed to wildtype C57BL/6 mice in order to remove potential off-target effects of the CRISPR/Cas9. Resultant heterozygous animals (F7FMR/WT) from the final cross were bred to generate F7FMR/FMR, F7FMR/WT, and F7WT/WTlittermates. We generated 59 male and 52 female animals and a binomial distribution test demonstrated that sex is equally distributed in the population. Moreover, the genotypes expected from the heterozygous crosses were inherited in a 1:2:1 ratio, further indicating that the gain-of-function in FVII is not lethal during development. As additional metrics of health, we measured weight longitudinally during weeks 1-10 of life and found no differences between the three genotypes for either gender. Complete blood counts (CBCs) revealed no differences between the F7FMR/FMR, F7FMR/WT, and F7WT/WTgenotypes, with the exception of a mild elevation in F7FMR/WTanimals compared to animals with wildtype FVII. Collectively, we found that the gain-of-function in EPCR binding by endogenous FVII is not detrimental to the overall health of the mice. Subsequently, we determined the mFVII levels in the F7FMR/FMR, F7FMR/WT, and F7WT/WTanimals using an in-house ELISA. We observed that plasmatic mFVII levels were dependent on the EPCR-binding capacity of the endogenous mFVII. Specifically, F7WT/WTmice, whose mFVII does not bind EPCR, had a plasmatic mFVII concentration of ~690 ng/ml. In contrast, F7FMR/FMRhomozygote mice had ~350 ng/ml of mouse FVII, approximately half the plasma levels of the F7WT/WT. Heterozygote animals F7FMR/WThad an intermediate plasmatic mFVII level (~550 ng/ml), suggesting that EPCR may regulate plasmatic FVII levels in vivo. Lastly, we determined the hemostatic response to injury in the F7FMR/FMR, F7FMR/WT, and F7WT/WTanimals. We did this in two ways, by measuring blood loss following tail clip assay and by determining time to vessel occlusion following ferric chloride injury of the carotid artery. We observed no differences between the three genotypes in response to either injury model. In conclusion, we have generated and characterized a novel mouse model in which endogenous FVII is capable of binding EPCR. Using this model, we demonstrated that EPCR can modulate plasmatic FVII levels in vivo but does not appear to affect hemostasis. Since this model mimics the FVII-EPCR interaction in humans, it can now be used to further investigate how this interaction participates in other normal or pathologic states that depend on FVII and/or EPCR. Disclosures Margaritis: Bayer Hemophilia Awards: Research Funding; Bristol-Myers Squibb: Other: Salary (spouse); CSL Behring: Other: Salary (spouse); NovoNordisk A/S: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 18-18
Author(s):  
Giulia Pavani ◽  
Lacramioara Ivanciu ◽  
Paris Margaritis

Abstract Abstract 18 High-dose human activated Factor VII (FVIIa) use is widespread in hemophilic patients with anti Factor VIII or Factor IX antibodies as well as in off-label applications. In addition to tissue factor, the endothelial protein C receptor (EPCR) also binds human FVIIa. However, the physiological consequences of this interaction on the potential hemostatic effects following bolus administration of FVIIa are still unclear. To investigate this in a mouse model, we decided to study the interaction of murine FVIIa (mFVIIa) with murine EPCR (mEPCR) in vitro and, subsequently, in vivo. We have previously shown, either in solution (with murine soluble EPCR) or on cells expressing full-length EPCR, that mFVIIa has a very low affinity for murine EPCR (Kd > 8μM), in contrast to human FVIIa binding to human EPCR. Therefore, to use the mouse as a model to study the FVIIa-EPCR interaction, we engineered mEPCR binding capacity into mFVIIa by partial substitution of its Gla domain, using the murine Protein C Gla domain as a donor. Combined modifications of 3 residues in mFVIIa (L4F, L8M and W9R; FMR-mFVIIa) were sufficient to confer mEPCR binding (Kd ≈ 200 nM, in presence of 1.6 mM Ca2+ and 0.6 mM Mg2+), without impairing the activity of the molecule as measured by a clotting assay. Here, we extend the characterization of FMR-mFVIIa in vitro and in vivo. First, we monitored the affinity of FMR-mFVIIa or wildtype mFVIIa (WT-mFVIIa) for its natural cofactor, murine tissue factor in the context of a cell membrane. For this, we generated CHO-K1 cells stably expressing full-length mTF (CHO-K1-mTF). FMR- or WT-mFVIIa was incubated at 4 degrees C (in presence of 1.6 mM Ca2+ and 0.6 mM Mg2+) on such cells at increasing concentration and, following quantification of the bound fraction, we observed no difference between FMR- and WT-mFVIIa in affinity for mTF (18 ± 13 nM and 17 ± 2 nM, respectively). To begin defining the role of EPCR-FVIIa interaction in vivo, we injected WT-mFVIIa or FMR-mFVIIa (500μg/kg) into C57BL6 wildtype mice (n=5 per protein per timepoint) via tail vein and monitored plasmatic concentration at different timepoints. The decrease in plasmatic levels over time followed a biphasic pattern. At 5 and 15 minutes post injection, plasmatic concentration of FMR-mFVIIa was significantly lower than WT-mFVIIa (41 ± 9% [FMR-mFVIIa] vs. 66 ± 7% [WT-mFVIIa] of the initial dose at 5 min, p=0.001; 18.5 ± 2.8% [FMR-mFVIIa] vs. 40.5 ± 9.0% [WT-mFVIIa] of the initial dose at 15 min, p=003). No differences were observed at later timepoints (up to 2 hours post protein infusion). Moreover, there were no changes in either platelet counts or hematocrit over the period of observation. Next, we wanted to confirm that the differences in recovery between the infused proteins were the result of mEPCR binding. For this, we infused an EPCR-blocking (RCR-252) or isotype control antibody (50μg/mouse) prior to administration of FMR- or WT-mFVIIa. We assessed plasmatic concentration at 5 min post protein infusion. In accordance with our previous data, mice that received isotype control IgG showed reduced recovery for the FMR-mFVIIa chimera vs. WT-mFVIIa (p=0.001). In contrast, antibody blocking of mEPCR prior to protein infusion increased the recovery of FMR-mFVIIa to that observed for WT-mFVIIa. These data suggest that the reduced recovery observed by bolus administration of FMR-mFVIIa vs. WT-mFVIIa was attributable to the mEPCR binding capacity of FMR-mFVIIa. In conclusion, we have now characterized a mFVIIa chimeric molecule indistinguishable from WT-mFVIIa in terms of mTF binding and clotting activity, but bearing the capacity to interact with mEPCR in vitro and, more importantly, in vivo. These features mimic those found in human FVIIa, thereby allowing the study of EPCR-dependent mechanisms in the clearance and/or biodistribution of FVII/FVIIa in vivo. Our observations suggest, for the first time in a homologous system, that EPCR-binding capacity has a specific negative effect on the recovery of the mFVIIa chimera. This molecule can now be utilized in the context of bolus protease administration in hemophilic mice following injury, to test any potential hemostatic effects from a FVIIa-EPCR interaction in vivo. This may provide additional insight into the mechanism of action of high-dose FVIIa administration in hemophilia. Disclosures: Pavani: Bayer: Research Funding. Margaritis:Novo Nordisk A/S: Research Funding; Bayer: Research Funding.


2014 ◽  
Vol 111 (03) ◽  
pp. 447-457 ◽  
Author(s):  
Marisa Ninivaggi ◽  
Gerhardus Kuiper ◽  
Marco Marcus ◽  
Hugo ten Cate ◽  
Marcus Lancé ◽  
...  

SummaryBlood dilution after transfusion fluids leads to diminished coagulant activity monitored by rotational thromboelastometry, assessing elastic fibrin clot formation, or by thrombin generation testing. We aimed to determine the contributions of blood cells (platelets, red blood cells) and plasma factors (fibrinogen, prothrombin complex concentrate) to fibrin clot formation under conditions of haemodilution in vitro or in vivo. Whole blood or plasma diluted in vitro was supplemented with platelets, red cells, fibrinogen or prothrombin complex concentrate (PCC). Thromboelastometry was measured in whole blood as well as plasma; thrombin generation was determined in parallel. Similar tests were performed with blood from 48 patients, obtained before and after massive fluid infusion during cardiothoracic surgery. Addition of platelets or fibrinogen, in additive and independent ways, reversed the impaired fibrin clot formation (thromboelastometry) in diluted whole blood. In contrast, supplementation of red blood cells or prothrombin complex concentrate was ineffective. Platelets and fibrinogen independently restored clot formation in diluted plasma, resulting in thromboelastometry curves approaching those in whole blood. In whole blood from patients undergoing dilution during surgery, elastic clot formation was determined by both the platelet count and the fibrinogen level. Thrombin generation in diluted (patient) plasma was not changed by fibrinogen, but improved markedly by prothrombin complex concentrate. In conclusion, in dilutional coagulopathy, platelets and fibrinogen, but not red blood cells or vitamin K-dependent coagulation factors, independently determine thromboelastometry parameters measured in whole blood and plasma. Clinical decisions for transfusion based on thromboelastometry should take into account the platelet concentration.


2020 ◽  
Vol 40 (4) ◽  
pp. 901-913 ◽  
Author(s):  
Jevgenia Zilberman-Rudenko ◽  
Hiroshi Deguchi ◽  
Meenal Shukla ◽  
Yoshimasa Oyama ◽  
Jennifer N. Orje ◽  
...  

Objective: Cardiac myosin (CM) is structurally similar to skeletal muscle myosin, which has procoagulant activity. Here, we evaluated CM’s ex vivo, in vivo, and in vitro activities related to hemostasis and thrombosis. Approach and Results: Perfusion of fresh human blood over CM-coated surfaces caused thrombus formation and fibrin deposition. Addition of CM to blood passing over collagen-coated surfaces enhanced fibrin formation. In a murine ischemia/reperfusion injury model, exogenous CM, when administered intravenously, augmented myocardial infarction and troponin I release. In hemophilia A mice, intravenously administered CM reduced tail-cut-initiated bleeding. These data provide proof of concept for CM’s in vivo procoagulant properties. In vitro studies clarified some mechanisms for CM’s procoagulant properties. Thrombin generation assays showed that CM, like skeletal muscle myosin, enhanced thrombin generation in human platelet-rich and platelet-poor plasmas and also in mixtures of purified factors Xa, Va, and prothrombin. Binding studies showed that CM, like skeletal muscle myosin, directly binds factor Xa, supporting the concept that the CM surface is a site for prothrombinase assembly. In tPA (tissue-type plasminogen activator)-induced plasma clot lysis assays, CM was antifibrinolytic due to robust CM-dependent thrombin generation that enhanced activation of TAFI (thrombin activatable fibrinolysis inhibitor). Conclusions: CM in vitro is procoagulant and prothrombotic. CM in vivo can augment myocardial damage and can be prohemostatic in the presence of bleeding. CM’s procoagulant and antifibrinolytic activities likely involve, at least in part, its ability to bind factor Xa and enhance thrombin generation. Future work is needed to clarify CM’s pathophysiology and its mechanistic influences on hemostasis or thrombosis.


Sign in / Sign up

Export Citation Format

Share Document