DNMT3A R882H Can Cooperate with FLT3-ITD to Cause AML in Mice

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2458-2458
Author(s):  
Angela Maria Verdoni ◽  
Celia Venezia ◽  
Jeffery Klco ◽  
Timothy J. Ley

Abstract Somatic mutations in the DNA methyltransferase, DNMT3A, have been identified in approximately 22% of de novo AML cases and in ~10% of patients with MDS. To understand how mutations in DNMT3A lead to hematopoietic abnormalities, we generated transgenic mice capable of overexpressing wild type human DNMT3A, or the most common AML mutation (R882H). The system used allows for the inducible expression of DNMT3A upon the expression of a coactivator and addition of Doxycycline (Dox) in the feed. A single founder line with the WT DNMT3A allele (overexpressed ~4 fold over endogenous WT murine Dnmt3a), and two founder lines with the R882H DNMT3A allele (one line overexpressing at ~16 fold level over endogenous mouse Dnmt3a and the other at ~4.5 fold overexpression) were established in a pure C57Bl6/J background. All three lines have been shown to overexpress the transgene in bone marrow when crossed to coactivator transgenic mice carrying the Rosa26-rtTA allele, and eating Dox chow. There is significant DNA hypomethylation in the bone marrow cells of the high expressing R882H line after the mice have been on Dox chow for 3 months. To determine the effect of R882H DNMT3A on hematopoiesis, we performed competitive transplantation studies where we mixed bone marrow derived from R882H DNMT3A Tg x rtTA doubly transgenic mice (Ly5.2+) with bone marrow from wild type mice (Ly5.1/5.2+) at a 1:1 ratio, and transplanted it into lethally irradiated recipients. After a 1 month engraftment period, mice were placed on Dox chow and monitored for 1 year. All control genotypes were included. After 6 months of dox chow administration, neither R882H Tg x rtTA line displayed a competitive advantage in the peripheral blood. However, there was a trend towards myeloid skewing in R882H DNMT3A expressing cells. At one year post-transplant, mice were sacrificed. In the spleen and peripheral blood, there were trends towards a myeloid differentiation bias in low-expressing R882H Tg x rtTA mice, but a significant myeloid bias in the bone marrow of high expressing R882H Tg x rtTA mice. This demonstrated that R882H DNMT3A expression leads to a myeloid differentiation bias over time, providing a possible explanation for the observation that R882H mutations are enriched for myeloid leukemias. A tumor watch of mice with all genotype combinations demonstrated that mice expressing R882H DNMT3A do not develop AML, even after 1.5 years on Dox chow. To address whether a second mutation is required to cooperate with R882H DNMT3A to cause AML, we performed a study using donor mice derived from the above competitive transplantation experiments (aged for one year) that were chimeric for R882H Tg x rtTA marrow and wild type marrow at a ~50:50 ratio. This chimeric marrow sample was transduced with a retroviral vector that expresses a human FLT3-ITD allele, one of the most common cooperating mutations with R882H DNMT3A. Ten recipient mice have been analyzed for a minimum of 4 months. Between 6 and 9 weeks after transplantation, two mice developed AML derived entirely from Ly5.2 expressing cells, demonstrating that the leukemic clone arose and rapidly expanded in R882H expressing bone marrow cells. Peripheral blood analysis in these mice and five others (7/10 total) demonstrated that FLT3-ITD expressing cells preferentially expand in the R882H expressing cells, while 1/10 mice showed no preference. We were able to analyze a single cohort (n=4) of mice at 3 months post engraftment, and found >25% enrichment of FLT3-ITD positive cells in R882H expressing cells. Two of ten mice did not display peripheral blood expansion of cells expressing FLT3-ITD. An additional two mice in this study developed Ly5.2/R882H-derived hematopoietic diseases with a longer latency, which are currently being assessed for leukemic properties by transplantation. Irrespective of the presence of FLT3-ITD expression, R882H expressing cells showed either stable engraftment or expansion over time. Six of ten mice displayed an expansion of R882H expressing cells (no FLT3-ITD allele) demonstrating a clonal advantage, 3/10 mice displayed stable engraftment, and only 1/10 showed a loss. Taken together, our results show that expression of the R882H allele can confer a competitive advantage independently after serial transplantation, but when combined with the common cooperating FLT3-ITD mutation, the FLT3-ITD expressing cells preferentially expand in R882H expressing cells, and can synergize to cause AML. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3548-3548
Author(s):  
Kentaro Kinjo ◽  
Deepa B. Shankar ◽  
Jerry Cheng ◽  
Samuel Esparza ◽  
Noah Federman ◽  
...  

Abstract CREB or cAMP responsive element binding protein is a 43-kDa-basic/leucine zipper (bZip) transcription factor that regulates gene expression through the activation of cAMP-dependent or -independent signal transduction pathways. CREB promotes growth and survival in a variety of cell types and is overexpressed in the bone marrow of greater than 60% of AML patients. To understand the role of CREB in myelopoiesis, we characterized the effects of CREB overexpression in transgenic mice. We created mice in which CREB expression was targeted to the myeloid lineage using the hMRP8 promoter. CREB transgenic mice showed evidence of monocytosis, compared to age-matched littermate controls. We performed colony assays with methylcellulose containing SCF, IL-6, and IL-3. Bone marrow cells from CREB transgenic mice formed robust colonies earlier and had increased numbers of colony forming units (CFU-GM) when compared to control mice. Cytospin analysis of these cells showed the presence of more immature myeloid cells compared to controls. At day 12, cells from colonies were 50% c-Kit positive, 83% Gr-1 positive, and 67% Mac-1 positive by FACS analysis. To assess self-renewal of progenitors from CREB transgenic mice, serial replating experiments were performed. Bone marrow cells from transgenic mice were highly successful in repopulating the methylcellulose containing SCF, IL-6, and IL-3, in contrast to the control cells, which were unable to grow after serial replating. Following tertiary replating of the CREB transgenic mouse bone marrow, we observed that the colonies (96+3.5) appeared more homogeneous with immature cells that were >99% c-Kit positive and <1% GR-1, Mac-1 positive. These results suggest that persistent expression of CREB leads to a blast-like phenotype in the absence of differentiation. To determine whether increased CREB expression confers growth factor-independence, we cultured bone marrow cells in methylcellulose that did not contain cytokines. We observed a 10-fold increase in the numbers of cells from CREB transgenic mice (two different founder lines) compared to normal bone marrow. When cultured in methylcellulose containing M-CSF, the bone marrow cells from CREB transgenic mice formed larger and significantly greater numbers of colonies. However, these cells did not grow in the presence of G-CSF or EPO alone. To determine if the myeloproliferative (monocytosis) phenotype was transplantable into wild type recipient mice we injected 4x106 bone marrow cells from CREB transgenic mice into wild type C57/BL6 recipient mice. Serial analysis of the peripheral blood counts and cell surface markers by FACS analysis showed earlier myeloid engraftment at 6 weeks following transplantation compared to normal control mice. The transgenic recipients showed increased monocytes and neutrophils in the peripheral blood with a corresponding increase in Mac-1 positive, Gr-1 positive cell populations at 8 weeks after transplantation. At the same time, the lymphocyte count was significantly lower in CREB transgenic recipient mice than controls. Our results suggest that CREB plays a critical role in the regulation of normal hematopoiesis and stem cell self-renewal.


1998 ◽  
Vol 331 (3) ◽  
pp. 733-742 ◽  
Author(s):  
Masafumi YOSHIMURA ◽  
Yoshito IHARA ◽  
Tetsuo NISHIURA ◽  
Yu OKAJIMA ◽  
Megumu OGAWA ◽  
...  

Several sugar structures have been reported to be necessary for haemopoiesis. We analysed the haematological phenotypes of transgenic mice expressing β-1,4 N-acetylglucosaminyltransferase III (GnT-III), which forms bisecting N-acetylglucosamine on asparagine-linked oligosaccharides. In the transgenic mice, the GnT-III activity was elevated in bone marrow, spleen and peripheral blood and in isolated mononuclear cells from these tissues, whereas no activity was found in these tissues of wild-type mice. Stromal cells after long-term cultures of transgenic-derived bone marrow and spleen cells also showed elevated GnT-III activity, compared with an undetectable activity in wild-type stromal cells. As judged by HPLC analysis, lectin blotting and lectin cytotoxicity assay, bisecting GlcNAc residues were increased on both blood cells and stromal cells from bone marrow and spleen in transgenic mice. The transgenic mice displayed spleen atrophy, hypocellular bone marrow and pancytopenia. Bone marrow cells and spleen cells from transgenic mice produced fewer haemopoietic colonies. After lethal irradiation followed by bone marrow transplantation, transgenic recipient mice showed pancytopenia compared with wild-type recipient mice. Bone marrow cells from transgenic donors gave haematological reconstitution at the same level as wild-type donor cells. In addition, non-adherent cell production was decreased in long-term bone marrow cell cultures of transgenic mice. Collectively these results indicate that the stroma-supported haemopoiesis is compromised in transgenic mice expressing GnT-III, providing the first demonstration that the N-glycans have some significant roles in stroma-dependent haemopoiesis.


Blood ◽  
1997 ◽  
Vol 90 (6) ◽  
pp. 2148-2159 ◽  
Author(s):  
Harshal H. Nandurkar ◽  
Lorraine Robb ◽  
David Tarlinton ◽  
Louise Barnett ◽  
Frank Köntgen ◽  
...  

Abstract Interleukin-11 (IL-11) is a pleiotropic growth factor with a prominent effect on megakaryopoiesis and thrombopoiesis. The receptor for IL-11 is a heterodimer of the signal transduction unit gp130 and a specific receptor component, the α-chain (IL-11Rα). Two genes potentially encode the IL-11Rα: the IL11Ra and IL11Ra2 genes. The IL11Ra gene is widely expressed in hematopoietic and other organs, whereas the IL11Ra2 gene is restricted to only some strains of mice and its expression is confined to testis, lymph node, and thymus. To investigate the essential actions mediated by the IL-11Rα, we have generated mice with a null mutation of IL11Ra (IL11Ra−/−) by gene targeting. Analysis of IL11Ra expression by Northern blot and reverse transcriptase-polymerase chain reaction, as well as the absence of response of IL11Ra−/− bone marrow cells to IL-11 in hematopoietic assays, further confirmed the null mutation. Compensatory expression of the IL11Ra2 in bone marrow cells was not detected. IL11Ra−/− mice were healthy with normal numbers of peripheral blood white blood cells, hematocrit, and platelets. Bone marrow and spleen contained normal numbers of cells of all hematopoietic lineages, including megakaryocytes. Clonal cultures did not identify any perturbation of granulocyte-macrophage (GM), erythroid, or megakaryocyte progenitors. The number of day-12 colony-forming unit-spleen progenitors were similar in wild-type and IL11Ra−/− mice. The kinetics of recovery of peripheral blood white blood cells, platelets, and bone marrow GM progenitors after treatment with 5-flurouracil were the same in IL11Ra−/− and wild-type mice. Acute hemolytic stress was induced by phenylhydrazine and resulted in a 50% decrease in hematocrit. The recovery of hematocrit was comparable in IL11Ra−/− and wild-type mice. These observations indicate that IL-11 receptor signalling is dispensable for adult hematopoiesis.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 221-221
Author(s):  
Xun Shang ◽  
Lina Li ◽  
Jose Concelas ◽  
Fukun Guo ◽  
Deidre Daria ◽  
...  

Abstract Hematopoietic stem/progenitor cells (HSPCs) are maintained by strictly regulated signals in the bone marrow microenvironment. One challenge in understanding the complex mode of HSPC regulation is to link intracellular signal components with extracellular stimuli. R-Ras is a member of the Ras family small GTPases. Previous mouse genetic studies suggest that R-Ras mRNA is primarily expressed in endothelial cells and R-Ras is involved in vascular angiogenesis. In clonal cell lines, although dominant mutant overexpression studies suggest a possible role of R-Ras in regulating cell adhesion and spreading, proliferation and/or differentiation in a cell-type dependent manner, it remains controversial whether R-Ras activity may promote or inhibit cell adhesion and migration. Here, in a mouse knockout model, we have examined the role of R-Ras in HSPC regulation by a combined in vivo and in vitro approach. Firstly, we found that R-Ras is expressed in the Lin− low density bone marrow cells of wild-type mice, and R-Ras activity in the cells is downregulated by cytokines and chemokines such as SCF and SDF-1a (∼ 20% and 40% of unstimulated control, respectively). Secondly, R-Ras deficiency did not significantly affect peripheral blood CBC, nor alter the frequency or distribution of long-term and short-term hematopoietic stem cells (defined by IL7Ra−Lin−Sca-1+c-Kit+CD34− and IL7Ra−Lin−Sca-1+c-Kit+CD34+ genotypes, respectively) in the bone marrow, peripheral blood and spleen. Competitive repopulation experiments using the wild-type and R-Ras−/− bone marrow cells at 1:1 ratio in lethally irradiated recipient mice showed no significant difference of blood cells of the two genotypes in the recipients up to 6 months post-transplantation. R-Ras−/− bone marrow cells did not show a detectable difference in colony forming unit activities assayed in the presence of various combinations of SCF, TPO, EPO, IL3, G-CSF and serum, compared with the matching wild-type cells. Thirdly, upon challenge with G-CSF, a HSPC mobilizing agent, R-Ras−/− mice demonstrated a markedly enhanced ability to mobilize HSPCs from bone marrow to peripheral blood as revealed by genotypic and colony-forming unit analyses (WT: 150 vs. KO: 320 per 200uL blood, p=0.018), and R-Ras−/− HSPCs exhibit significantly decreased homing activity (WT: 4.3% vs. KO: 2.8%, p&lt;0.001). Fourthly, isolated R-Ras−/− HSPCs displayed a constitutively assembled cortical actin cytoskeleton structure in the absence of cytokine or chemokine stimulation, similar to that of activated wild-type HSPCs. The R-Ras−/− HSPCs were defective in adhesion of cobblestone area-forming cells to a bone marrow-derived stroma cell line (FBMD-1) and in adhesion to fibronectin CH296 fragment, and showed a drastically increased ability to migrate toward a SDF-1a gradient (WT: 16% vs. KO: 38%, p&lt;0.001). These data point to a HSPC-intrinsic role of R-Ras in adhesion and migration. Finally, the functional changes of R-Ras−/− cells were associated with a ∼3 fold increase in Rac-GTP species and constitutively elevated Rac downstream signals of phsopho-PAK1 and phospho-myosin light chain. Partial inhibition of Rac activity by NSC23766, a Rac GTPase-specific inhibitor, readily reversed the migration phenotype under SDF-1a stimulation. Taken together, these studies demonstrate that R-Ras is a critical signal regulator for HSPC adhesion, homing, migration, and mobilization through a mechanism involving Rac GTPase-regulated cytoskeleton and adhesion machinery.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1492-1492
Author(s):  
Akil Merchant ◽  
Anju Singh ◽  
Giselle Joseph ◽  
Qiuju Wang ◽  
Ping Zhang ◽  
...  

Abstract Abstract 1492 Poster Board I-515 Previous studies have established an important role for reactive oxygen species (ROS) in regulating the function and life-span of hematopoietic stem cells (HSC). Nuclear factor erythroid-2–related factor 2 (Nrf2) is a redox-sensitive transcription factor that regulates cellular responses to ROS and detoxification pathways implicated in chemoresistance, however, its role in normal stem cells is unknown. We analyzed Nrf2null mice and found increased total bone marrow cellularity, cKit+Sca1+Lin− (KSL) stem-progenitor cells, and long-term quiescent HSC (CD34−KSL) compared to wild type mice (p<0.05). Transplantation of equal numbers of KSL cells from Nrf2wt and Nrf2null resulted in a five-fold decrease in peripheral blood chimerism from Nrf2null derived cells at 16 weeks (15% wild type vs. 3% null, p<0.05). Unlike other models of deficiencies in genes associated with ROS handling, such as ATM or the FoxO family of transcription factors, basal ROS levels were not elevated in Nrf2null HSC. However, Nrf2null bone marrow cells demonstrated increased sensitivity to induced oxidative stress and in vitro treatment with H2O2 resulted in a 2 fold decrease in colony formation in methylcellulose. We also examined the in vivo sensitivity of Nrf2null cells to oxidative stress by irradiating (400 rads) stably chimeric mice 20 weeks following transplantation with either Nrf2wt or Nrf2null HSC. Mice receiving Nrf2null HSC demonstrated a 50% decrease in peripheral blood chimerism at 4 months following radiation compared to no change in Nrf2wt recipients (p<0.05) confirming that loss of Nrf2 leads to increased sensitivity to oxidative stress. Microarray gene expression analysis from Nrf2wt and Nrf2null mice revealed down regulation of the G-CSF cytokine receptor in Nrf2null HSC and suggested that defective cytokine signaling may contribute to the HSC dysfunction seen in Nrf2null bone marrow cells. To test this hypothesis, we attempted to rescue the function of Nrf2null HSC by treating mice with exogenous G-CSF. Nrf2wt and Nrf2null mice were treated with one week of daily G-CSF and then HSC were harvested and transplanted. In contrast to the defects in engraftment of untreated Nrf2null HSC, there was no significant difference in peripheral blood chimerism following transplantation of G-CSF treated Nrf2wt or Nrf2null HSC, thus demonstrating that G-CSF treatment could rescue the HSC defect in mutant mice. In conclusion, the Nrf2 transcription factor appears to be a novel and essential regulator of normal HSC function through the modulation of oxidative stress response and cytokine signaling. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 367-367
Author(s):  
Deepa B. Shankar ◽  
Kentaro Kinjo ◽  
Jenny Chang ◽  
Kathleen M. Sakamoto

Abstract The cyclic AMP Response Element Binding Protein, CREB, is a basic leucine zipper transcription factor that induces genes that regulate cell proliferation and survival. CREB is a downstream target of GM-CSF signaling pathways in myeloid cells, resulting in transactivation of critical target genes. We previously demonstrated that both CREB protein and mRNA levels are increased in the bone marrow cells of patients with AML at diagnosis. In contrast, CREB is expressed at low levels in normal bone marrow cells. To examine the expression of CREB in specific bone marrow and leukemia stem cell populations, we performed quantitative real-time PCR. AML blast cells were sorted and were shown to have increased CREB mRNA expression in CD34+CD33+ and CD34-CD33+ population compared to normal bone marrow progenitor cells. To understand the role of CREB in normal hematopoiesis and leukemogenesis, we created transgenic mice in which the myeloid specific hMRP8 promoter controls CREB expression. Within months, these mice developed increased monocytes and neutrophils in the peripheral blood. The increased cells in the peripheral blood and bone marrow were Gr1+Mac1+. We did not observe increases in other cell lineages using FACS analysis and the markers, B220, CD3, and Ter119. Bone marrow cells from CREB transgenic mice displayed increased colony size, greater numbers of colonies, and immortalization in colony replating assays with methylcellulose containing IL-3, IL-6, and Stem Cell Factor, compared to age-matched littermate controls. Bone marrow from CREB transgenic mice grew in the absence of cytokines, demonstrating factor-independent growth. Increased numbers of CFU-M was observed with CREB transgenic mouse bone marrow in colony assays with methylcellulose containing M-CSF. Although the mice did not develop acute leukemia, 7 out of 8 CREB transgenic mice compared to 0 out of 13 control mice developed enlarged spleens and myeloproliferative disease (MPD) after 12 months of age. Histology of the spleens showed destruction of the normal architecture with aberrant myeloid cells, suggestive of a myeloproliferative disease/myelodysplastic syndrome. Both the indolent course and phenotype of our mice were similar to Chronic Myelomonocytic Leukemia (CMML) observed in humans. Interestingly, myeloid cells from patients with CML in chronic phase also express higher levels of CREB. Studies are underway to characterize CREB expression in peripheral blood or bone marrow cells from patients with MPD/MDS, including CML, CMML, and transient myeloproliferative disease of Down Syndrome. We are also analyzing the spleens from CREB transgenic mice that develop MPD/MDS. Our results demonstrate that overexpression of CREB is sufficient to induce myeloid cell transformation to a preleukemic state in vivo. Therefore, the CREB transgenic mouse provides a useful model to test novel therapies to treat MPD/MDS.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 609-609 ◽  
Author(s):  
Angela M. Verdoni ◽  
Christopher B Cole ◽  
Shamika Ketkar-Kulkarni ◽  
Tamara Lamprecht ◽  
Nichole Havey ◽  
...  

Abstract Somatic mutations in the DNA methyltransferase, DNMT3A, have been identified in &gt;30% of de novo AML cases with a normal karyotype, and in &gt;10% of patients with MDS and T-ALL. To understand whether mutations in DNMT3A alter hematopoietic development, we generated a transgenic mouse model capable of overexpressing either wild type human DNMT3A or the most common DNMT3A mutation found in AML cases (R882H, a hypomorphic variant that acts as a potent dominant negative inhibitor of WT DNMT3A, D. Germain et al., Cancer Cell 2014). Full-length human cDNAs encoding WT or R882H DNMT3A were cloned into a mammalian expression vector directly downstream from a tetracycline responsive element. This allows for the inducible expression of DNMT3A upon the expression of the rtTA coactivator, and the presence of Doxycycline (Dox). A single founder line for the WT DNMT3A allele, and two founder lines for the R882H DNMT3A allele, were established in the C57Bl6/J background. The WT DNMT3A transgene overexpressed 3.5x more human DNMT3A than endogenous murine DNMT3A in bone marrow cells; R882H DNMT3A transgenic line 1 expressed at a 4.5 fold excess, and R882H line 2 at a 16 fold excess. To determine whether overexpression of the R882H allele was associated with focal DNA hypomethylation in the bone marrow cells of mice (similar to that observed in human AML samples), we used a novel CpG capture approach with bisulfite sequencing to assess 200,000 genomic regions containing ~3 million CpGs in the bone marrow cells of 3 WT C57Bl6/J mice, 3 Dnmt3a null mice, and healthy transgenic mice noted above that had been on Dox chow for either 6 months or 1 year (transgenic mice do not develop hematopoietic malignancies even after one year of transgene induction). We were able to assess 1.6 million CpGs with 10X or greater coverage in all 14 samples. The Dnmt3a null marrow samples contained 188,367 differentially methylated CpGs (average of &gt;25% difference compared to WT bone marrow, q value=&lt;0.01). Of these, 187,093 were hypomethylated (&gt;99%); the hypomethylated CpGs were nearly identical in all three samples. Marrow cells from the two mice overexpressing the WT DNMT3A gene had only 338 differentially methylated CpGs compared to two matched rtTA control mice; of these, 337 were hypermethylated (&gt;99%). For the two mice overexpressing the R882H allele in line 2 (16x overexpression), bone marrow cells had 2,356 differentially methylated CpGs, of which 2,316 were hypomethylated (98%). Of these CpGs, 1,745 (73%) overlapped with hypomethylated CpGs in the Dnmt3a null marrow samples, indicating that R882H overexpression causes hypomethylation in a subset of CpGs whose methylation in bone marrow cells is Dnmt3a dependent. Because none of our mice developed hematologic malignancies even after one year, but had shown significant hypomethylation in the bone marrow, we hypothesized that cooperating mutations were necessary to produce malignancy. We transduced whole bone marrow cells from four transgenic mice: WT DNMT3A Tg x rtTA; R882H-1 Tg x rtTA; R882H-2 Tg x rtTA; and rtTA only (the same samples analyzed for methylation changes in the previous paragraph) with an MSCV-derived virus containing a human FLT3-ITD cDNA, and transplanted the transduced cells into 8-10 lethally irradiated recipients. Mice of all genotypes succumbed to myeloproliferative disease, T-cell lymphoma, T-lymphoma/ALL, or T-ALL. Overall median latencies were: rtTA=155 days, WT DNMT3A Tg x rtTA=164 days, R882H Tg-1 x rtTA=108.5 days, R882H-2 Tg x rtTA=135.5 days. The average latency for T cell malignancies demonstrated even greater differences among the four genotypes: rtTA n=4, 160.8 +/- 12.49 days (SEM), WT DNMT3A Tg x rtTA n=5, 167.3 +/- 4.854, R882H Tg-1 x rtTA n=3, 124.7 +/- 17.7, R882H-2 Tg x rtTA n=4 124.5 days +/- 22.14. T malignancies derived from R882H expressing cells were especially homogeneous compared to other groups; these tumors were CD4/CD8 double positive in all hematopoietic compartments. Despite the small sample size, these results demonstrate a trend towards a decreased latency for T malignancies in R882H expressing marrow cells, using a FLT3-ITD viral transduction model. We are confirming these data with additional mice. Taken together, our results demonstrate a clear focal hypomethyation phenotype in the bone marrow cells of DNMT3A R882H overexpressing mice, which may lead to increased susceptibility to neoplastic transformation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1997 ◽  
Vol 90 (6) ◽  
pp. 2148-2159 ◽  
Author(s):  
Harshal H. Nandurkar ◽  
Lorraine Robb ◽  
David Tarlinton ◽  
Louise Barnett ◽  
Frank Köntgen ◽  
...  

Interleukin-11 (IL-11) is a pleiotropic growth factor with a prominent effect on megakaryopoiesis and thrombopoiesis. The receptor for IL-11 is a heterodimer of the signal transduction unit gp130 and a specific receptor component, the α-chain (IL-11Rα). Two genes potentially encode the IL-11Rα: the IL11Ra and IL11Ra2 genes. The IL11Ra gene is widely expressed in hematopoietic and other organs, whereas the IL11Ra2 gene is restricted to only some strains of mice and its expression is confined to testis, lymph node, and thymus. To investigate the essential actions mediated by the IL-11Rα, we have generated mice with a null mutation of IL11Ra (IL11Ra−/−) by gene targeting. Analysis of IL11Ra expression by Northern blot and reverse transcriptase-polymerase chain reaction, as well as the absence of response of IL11Ra−/− bone marrow cells to IL-11 in hematopoietic assays, further confirmed the null mutation. Compensatory expression of the IL11Ra2 in bone marrow cells was not detected. IL11Ra−/− mice were healthy with normal numbers of peripheral blood white blood cells, hematocrit, and platelets. Bone marrow and spleen contained normal numbers of cells of all hematopoietic lineages, including megakaryocytes. Clonal cultures did not identify any perturbation of granulocyte-macrophage (GM), erythroid, or megakaryocyte progenitors. The number of day-12 colony-forming unit-spleen progenitors were similar in wild-type and IL11Ra−/− mice. The kinetics of recovery of peripheral blood white blood cells, platelets, and bone marrow GM progenitors after treatment with 5-flurouracil were the same in IL11Ra−/− and wild-type mice. Acute hemolytic stress was induced by phenylhydrazine and resulted in a 50% decrease in hematocrit. The recovery of hematocrit was comparable in IL11Ra−/− and wild-type mice. These observations indicate that IL-11 receptor signalling is dispensable for adult hematopoiesis.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4569-4569
Author(s):  
Basem M. William ◽  
Dan Feng ◽  
Wei An ◽  
Scott Nadeau ◽  
Bhopal Mohapatra ◽  
...  

Abstract Myeloproliferative disorders (MPDs) are heterogeneous clonal diseases with variable clinical courses. Mutations in the Cbl family genes have been reported in multiple independent studies to be present in about 10% of patients with MPDs and these patients tend of have a poorer prognosis. We have previously demonstrated that Cbl-flox/flox, Cbl-b-null mice rendered Cbl/Cbl-b double knockout (DKO) in the hematopoietic compartment with MMTV-Cre develop a disease phenotypically similar to human MPDs. An in vitro kinase inhibitor screen identified fasudil, a ROCK inhibitor, with relatively selective anti-proliferative activity against Cbl/Cbl-b DKO vs. control murine bone marrow cells. We established a mouse model with a uniform time of MPD onset by transplanting Cbl/Cbl-b DKO bone marrow cells (2x106 per recipient) into 21 busulfan-conditioned NOD/SCID/gamma chain-deficient (NSG) mice. All recipients showed donor cell engraftment. Four weeks post-transplant, we treated 13 mice with 100 mg/kg fasudil daily by gavage. By two weeks of treatment, total white cell and monocyte counts were significantly lower in mice treated with fasudil (p=0.02 and 0.04 respectively). For the entire group, we observed a trend towards improved survival in fasudil-treated mice that didn't reach statistical significance (p=0.07). However, analysis of male recipients only (n=12) revealed a significant survival advantage in fasudil-treated group (p=0.04). The gender difference may stem from a currently unexplained more severe disease phenotype we observed in female recipients. Notably, while all untreated mice succumbed to MPD, prolonged survival was observed in 2 mice beyond 27 weeks, nearly twice the average life-span in the Cbl/Cbl-b DKO MPD model (16 weeks). The 2 long-term survivors had undetectable levels of myosin light chain (MLC), a downstream target of ROCK phosphorylation (figure) suggesting that inhibition of downstream signaling of ROCK is associated with improved disease control and survival. Taken together, our data suggest a therapeutic potential for fasudil in the treatment of MPDs or other mutant Cbl-driven myeloid disorders. Figure: Fasudil activity in mouse model of Cbl/Cbl-b DKO MPD. Total WBC (A) and monocyte (B) counts over time in untreated and fasudil-treated mice (mean+/-SEM), C: MLC levels by Western Blot in peripheral blood of control vs. fasudil-treated mice; those surviving longer than 27 weeks are indicated. Figure:. Fasudil activity in mouse model of Cbl/Cbl-b DKO MPD. Total WBC (A) and monocyte (B) counts over time in untreated and fasudil-treated mice (mean+/-SEM), C: MLC levels by Western Blot in peripheral blood of control vs. fasudil-treated mice; those surviving longer than 27 weeks are indicated. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document