Identification and Mechanistic Characterization of CMPD1 As a Selective Sensitizer of Histone Deacetylase Inhibitors in Myeloid Malignancies

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3689-3689
Author(s):  
James M Bogenberger ◽  
Nanna Hansen ◽  
Devora Delman ◽  
Ruben A. Mesa ◽  
Raoul Tibes

Abstract Background: Histone deacetylase inhibitors (HDIs) have shown clinical activity in myeloid malignancies, albeit insufficient to justify single-agent therapy. Thus, we have sought targets/therapies that synergistically enhance the activity of HDIs for combination therapy. We conducted RNA-interference (RNAi) drug modifier screens with the HDI SAHA, and have previously reported convergence of multiple screen hits on different points of the p38-SAPK/JNK signaling pathway. However, in subsequent pharmacological studies, well-characterized p38α/β inhibitors SB2012190 and LY2228820, and JNK inhibitor SP600125 did not modulate SAHA anti-leukemic activity. Nonetheless, a putative MK2 substrate-selective p38 inhibitor known as CMPD1 (Biochemistry 2004 Sep 21; 43(37):11658-71) was found to potently synergize with SAHA in all AML cell lines tested (N=8) in a dose-dependent manner. Further, using ex vivo cultures of primary myeloid malignancies (N=14), CMPD1 showed strong, selective synergy with SAHA in malignant CD34+ isolated cells, as compared to little or no synergy in CD34-depleted cells. Furthermore, CMPD1 specifically synergized with SAHA and a similar HDI panobinostat, but was found to interact antagonistically with cytarabine, and only additively with azacitidine. Herein, we present additional data from our investigation to better understand the mechanism of CMPD1 synergy with HDIs for future clinical translation. Results: Concurrent cell cycle and apoptosis measurements by flow cytometry show that single-agent CMPD1 results in a potent G2/M arrest that is resolved over time without a significant induction of apoptosis, whereas the combination of SAHA + CMPD1 results in a similar or increased level of G2/M arrest, which conversely culminates in a significant induction of apoptosis. The synergistic dose of single-agent SAHA used in these flow cytometry studies did not cause any significant cell cycle changes, and did not induce significant apoptosis alone in the AML cell lines studied. CMPD1 is known to be a MK2 substrate-selective p38 inhibitor; however, we find that CMPD1 potently increases the phosphorylation of MK2 at doses strongly synergistic with SAHA. This is not a universal activity of p38 inhibitors in our in vitro AML models, as the p38 inhibitor SB202190 does not increase MK2 phosphorylation alone or in combination with SAHA. We further hypothesized that CMPD1 synergizes with SAHA through a transcription-based mechanism, thus we measured mRNA expression by next-generation sequencing after SAHA and CMPD1 treatment alone, and in combination, in an AML cell line TF-1. We find that SAHA + CMPD1 treatment induces a synergistic increase in transcript levels of: i) several chemokines such as IL-8, CXCL1, CXCL2, and CXCL3, ii) inhibitor of DNA binding proteins ID2 and ID3, and iii) cell cycle regulator p21. Transcript levels of the Hippo pathway transcription factor YAP1 were also found to be increased by CMPD1 treatment in TF-1. We confirm an increase of total YAP1 protein levels by western blot. We also find an increase of YAP1 phosphorylation at serine 127 in CMPD1 or CMPD1 + SAHA treated samples in several AML cell lines, yet we find that Ser-127 phosphorylated YAP1 is located in the nucleus. Consistent with YAP1 Ser-127 phosphorylation, we find that upstream signaling kinase LATS1 is activated/phosphorylated at serine 909 in AML cell lines after treatment with CMPD1 or SAHA + CMPD1. We also confirm a synergistic increase in p21 protein levels upon SAHA + CMPD1 treatment by western blot in several AML cell lines. Changes in the protein levels of ID2 and ID3 were confirmed in TF-1 by western blot; however, ID protein levels appear to be uniquely affected by CMPD1 or the combination in a cell line-dependent manner. Conclusion: CMPD1 selectively synergizes with histone deacetylases inhibitors in myeloid malignancies. The synergistic activity of this combination highlights the potential for selectively targeting malignant CD34+ cells. The phosphorylation of LATS1 observed is consistent with i) the known roles for LATS1 in cell cycle regulation, ii) the G2/M arrest observed with CMPD1, and iii) the downstream phosphorylation of YAP1 observed. These findings linking CMPD1 with LATS1/YAP1 await further study and characterization. Although CMPD1 is not a clinically-relevant compound, CMPD1 may be used as a scaffold or tool compound to enable future development and research. Disclosures Mesa: Pfizer: Research Funding; Novartis Pharmaceuticals Corporation: Consultancy; Genentech: Research Funding; NS Pharma: Research Funding; Promedior: Research Funding; Gilead: Research Funding; CTI Biopharma: Research Funding; Incyte Corporation: Research Funding.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2999-2999 ◽  
Author(s):  
Samantha Pozzi ◽  
Diana Cirstea ◽  
Loredana Santo ◽  
Doris M Nabikejje ◽  
Kishan Patel ◽  
...  

Abstract Abstract 2999 Multiple myeloma (MM) is a treatable but incurable hematological malignancy and novel targeted therapies are under investigation. MM is characterized by dysregulation of the cell cycle, consequent to the overexpression of cyclins and their related kinases, the cyclins dependent kinases (CDK), a group of Ser/Thr proteine kinases. CDKs represent a promising therapeutic target, and inhibitors have been developed for anticancer treatment. We have previously studied seliciclib in the context of MM. CYC065, a second generation CDK inhibitor is the more potent derivative of seliciclib. It is mainly active on CDK 2, 5 and 9, involved in progression of the cell cycle and protein transcription. It has already shown promising results in preclinical studies in breast cancer and acute leukemia. We tested CYC065 in in vitro experiments in MM. Our preliminary data in 7 MM cell lines showed cytotoxicity of CYC065, both in MM cell lines sensitive as well as resistant to conventional chemotherapy, with an IC50 ranging between 0.06 and 2μ M, at 24 and 48h. Tritiated thymidine uptake assay confirmed the antiproliferative effects of CYC065 in MM, and its ability to overcome the growth advantage conferred by co-culture with bone marrow stromal cells derived from MM patients, and cytokines like interleukin 6 (10ng/ml) and insulin like growth factor-1 (50ng/ml). The anti-proliferative effect was evident both at 24 and 48h, starting at concentrations as low as 0.015μ M. The AnnexinV/PI assay in the MM1.s cell line confirmed CYC065's ability to induce apoptosis in a time dependent manner starting at 9 hours of treatment, at a concentration of 0.125 μ M, inducing 82% of apoptosis after 48h of exposure. Cell cycle analysis in the same MM1.s cell line showed an increase of subG1 phase, starting at 9 hours of treatment, at 0.125 μ M of CYC065. Preliminary results of western blot analysis confirmed the apoptotic effect of CYC065 in the MM1s cell line, highlighted by the cleavage of caspase 3, 8, 9 and PARP. The compound was tested in primary CD138+ cells isolated from three refractory MM patients, confirming its efficacy at 0.125 μ M, both at 24 and 48h. Comparative analysis in PBMCs from normal donors, for the evaluation of the drug toxicity is ongoing and will be presented. In conclusion our preliminary data confirm the efficacy of CYC065 in MM cell lines and primary MM cells, at nanomolar concentrations. Ongoing mechanistic and in vivo studies will delineate its role in the now increasing spectrum of CDK inhibitors in MM and better define its potential for clinical development in MM. Disclosures: Green: Cyclacel: Employment. Anderson:Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Scadden:Fate Therapeutics: Consultancy, Equity Ownership, Patents & Royalties. Raje:Celgene: Membership on an entity's Board of Directors or advisory committees; Astra Zeneca: Research Funding; Acetylon: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 873-873
Author(s):  
Maria Eugenia Riveiro ◽  
Lucile Astorgues-Xerri ◽  
Charlotte Canet-jourdan ◽  
Mohamed Bekradda ◽  
Esteban Cvitkovic ◽  
...  

Abstract Background: Exposure of cancer cells to BET-BRD protein inhibitors has been associated with a significant downregulation of C-MYC expression, leading to suppression of the transcriptional program linked to proliferation and survival. C-MYC mRNA expression, mediated by STAT5 activation, is induced by the JAK2 (V617F) mutation (JAK2mu) in transfected BA/F3 cells (Funakoshi-Tago, et al. 2013). We selected JAK2mu leukemia-derived cell lines for preclinical evaluation of OTX015 (Oncoethix, Switzerland), a selective orally-bioavailable inhibitor of BET-BRD proteins with promising early results in an ongoing phase I study in hematologic malignancies (Herait et al, AACR 2014, NCT01713582). Material and Methods: Antiproliferative effects of OTX015 and JQ1 were evaluated in three established JAK2mu human myeloid leukemia cell lines (SET2, MUTZ8, HEL 92.1.7). GI50 (OTX015 concentration inducing 50% growth inhibition) and Emax (% cell proliferation at 6 µM OTX015) values were determined by MTT assay after 72h exposure. Protein levels were analyzed by Western blot, and RT-PCR was performed with Fast SYBR Green Master Mix on a StepOnePlus Real-Time PCR System. For cell cycle analysis, cells were stained with propidium iodide and analyzed with a FACScan flow cytometer. Induction of apoptosis was evaluated by Annexin-V. Simultaneous schedules of OTX015 combined with ruxolitinib, a JAK2 inhibitor, were evaluated. Combination index (CI) was determined using the Chou & Talalay method; CI<1 reflects synergy, CI=1 additivity and CI>1 antagonism. Results: After 72h exposure, SET2 was the most sensitive cell line (GI50=0.12 µM and Emax=15%), and HEL92.1.7 cells had a GI50=1.9 µM with an Emax=23%. MUTZ8 was the most resistant cell line with an Emax=61%. Similar GI50 and Emax values are observed with JQ1. A significant increase in the fraction of apoptotic cells was observed in SET2 cells after 72h 500 nM OTX015 exposure. Non-significant increases in Annexin-positive cells were seen in HEL92.1.7 and MUTZ8 cells. Cell cycle analysis revealed a significant increase in the percentage of SET2 cells in subG0/G1 after 24, 48, and 72h 500 nM OTX015, correlating with the increase in apoptosis. Conversely, an increase in the percent cells in the G1 phase was observed in HEL 92.1.7 cells. After 4h 500 nM OTX015, BRD2 mRNA levels were significantly increased in all three cell lines, whereas BRD3 levels were not modified. BRD4 mRNA levels increased significantly after 48h in SET2 cells. OTX015 treatment induced a transitory reduction of C-MYC mRNA levels after 4h with an increase at 24h in all cell lines. At the protein level, C-MYC decreased substantially in SET2 cells after 4h, with complete disappearance after 48h without recovery, while in the less sensitive MUTZ8 cell line, the decrease in C-MYC protein levels was transitory. Conversely, this proto-oncogene was not modified in HEL92.1.7 cells. In addition, p-STAT5 protein was downregulated by OTX015 in SET2 cells, but was increased in MUTZ8 cells after longer exposure time. Furthermore, BCL2 mRNA and protein levels decreased in SET2 cells, correlating with the apoptosis induction seen with OTX015 treatment. In HEL92.1.7 cells, P21 mRNA levels and cyclin D1 protein levels increased after 4h and 48h OTX015 treatment, respectively. Moreover, concomitant combination of OTX015 with ruxolitinib showed a highly antagonist effect (CI>7) in SET2 cells, the most sensitive cell line to both agents. On the other hand, very strong synergy was observed in HEL92.1.7 (CI=0.19) and MUTZ8 (CI=0.41), despite their low sensitivity to single agent OTX015. Conclusions. Our findings demonstrate that OTX015 exhibits potent activity against cultured leukemic cells expressing the JAK2 V617F mutation, inducing apoptosis or cell cycle arrest at submicromolar concentrations. This activity correlates with modulation of C-MYC, p-STAT5, BCL2, P21 and cyclin D1 mRNA and protein levels following OTX015 treatment. Our study highlights the novel and synergistic activity of the combination of a BRD antagonist and a JAK inhibitor in human leukemic cells harboring the JAK2 V617 F mutation, supporting the rationale for in vivo testing of OTX015 in combination with JAK inhibitors in leukemic JAK2mu models. Disclosures Riveiro: Oncoethix SA: Research Funding. Astorgues-Xerri:Oncoethix SA: Research Funding. Canet-jourdan:Oncoethix SA: Research Funding. Bekradda:Oncoethix SA: Research Funding. Cvitkovic:Oncoethix SA: Membership on an entity's Board of Directors or advisory committees, Shareholder and CSO Other. Herait:Oncoethix SA: CMO and Shareholder Other. Raymond:Oncoethix SA: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4318-4318 ◽  
Author(s):  
Julian Baumeister ◽  
Nicolas Chatain ◽  
Annika Hubrich ◽  
Caroline Küstermann ◽  
Stephanie Sontag ◽  
...  

Abstract Myeloproliferative neoplasms (MPN) are a heterogeneous group of malignancies including polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). The JAK2V617F mutation can be found in 90% of PV and approximately 50% of ET and PMF patients. Hypoxia-inducible factors (HIFs) are master transcriptional regulators of the response to decreases in cellular oxygen levels. Unveiling the function of deregulated HIF-1 signaling in normal and malignant hematopoiesis was the aim of several recent publications, highlighting the importance of HIF-1 for the maintenance of leukemic stem cells (LSCs) in acute and chronic myeloid leukemia (AML/CML). In a JAK2V617F knock-in mouse model and in patients, JAK2V617F was shown to induce the accumulation of reactive oxygen species (ROS) in the hematopoietic stem cell compartment, leading to a stabilization of HIF-1α protein. Further, aberrant STAT5 and PI3K/AKT/mTOR signaling induced HIF-1α expression on the transcriptional and translational level. Ruxolitinib treatment inhibited growth and reduced the expression of HIF-1α and its target gene VEGF in the JAK2V617F human erythroleukemia cell line HEL. In several leukemic cell lines constitutive expression of HIF-1α was reported, even under normoxic conditions. However, it still remains unknown whether HIF-1α plays a role in JAK2V617F positive MPN. In this study, we investigated the role HIF-1α signaling in JAK2V617F positive MPN in vitro. We retrovirally transduced the murine bone marrow cell line 32D with JAK2V617F or JAK2WT. Western blot analysis revealed significant increases in HIF-1α protein levels in JAK2V617F positive cells compared to JAK2WT controls after cultivation in normoxic conditions and this effect was abrogated by treatment with the JAK1/JAK2 inhibitor ruxolitinib. Inhibition of HIF-1, binding to hypoxia response elements (HRE), by low doses of echinomycin (1 nM), significantly impaired proliferation and survival. Using an Annexin-V/7-AAD flow cytometry assay apoptosis was found to be selectively induced in JAK2V617F positive, but not JAK2WT cells after echinomycin treatment. Additionally, BrdU/7-AAD cell cycle analysis revealed that only JAK2V617F positive cells were significantly arrested in G0/1 phase. These findings were consistent with shRNA-mediated knockdown (KD) of HIF-1α in JAK2V617F transduced 32D cells in presence but not the absence of HIF-2 antagonist 2. Inhibition of HIF-2 was necessary due to a compensatory increase of HIF-2α protein levels, shown by Western Blot analysis, counteracting HIF-1α-KD mediated effects. We isolated PBMCs and BMMNCs from JAK2V617F positive patients or healthy controls using Ficoll density gradient centrifugation. Echinomycin significantly abrogated the colony formation ability alone and in combination with ruxolitinib. In vitro treatment with echinomycin significantly decreased cell number and viability of 8 JAK2V617F positive BMMNC samples (4 PV, 3 PMF, 1 preMF; p[1nM]=0.0169, p[5nM]=0.0009) and 7 PBMC samples (6 PV, 1 PMF; p[1nM]=0.0156, p[5nM]=0.0156) in a dose-dependent manner. In contrast, PBMCs from 6 healthy donors were unaffected by the treatment. The same effect was observed in heterozygous and homozygous iPS cell-derived progenitors from JAK2V617F positive PV patients, whereas JAK2WT cells were unaffected by the treatment. Collectively, our data indicate that targeting HIF-1 might represent a novel therapeutic approach in classical Philadelphia-chromosome-negative MPN. Disclosures Brümmendorf: Pfizer: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Janssen: Consultancy; Merck: Consultancy; Takeda: Consultancy.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 33-34
Author(s):  
Yuxuan Che ◽  
Yang Liu ◽  
Lingzhi Li ◽  
Holly Hill ◽  
Joseph McIntosh ◽  
...  

Introduction The past decades witnessed dramatic improvement of overall survival rate of mantle cell lymphoma (MCL) patients by constant efforts in developing novel therapeutic strategies that include ibrutinib and venetoclax. Nevertheless, resistance is still a major challenge in refractory/relapsed MCL patients. Chromosomal translocation t(11:14)(q13:q32) of the cyclin D1 (CCND1) gene is the hallmark of MCL, which leads to overexpression of cyclin D1. This overexpression promotes aberrant cell cycle progression by activating CDK4/6. Abemaciclib is a selective CDK4/6 inhibitor used as a clinical treatment of breast cancer and has been shown to be effective in preclinical human MCL xenograft models. It has also been used in a phase II clinical trial as a single agent among refractory/relapsed MCL patients with an objective response rate of 35.7%. In this preclinical study, we aim to evaluate the benefit of a combinational therapeutic strategy using abemaciclib with other molecular targeting agents among MCL patients with therapeutic resistance. Methods Cytotoxic efficacy of abemaciclib as a single agent and in combination with other drugs on different MCL cell lines and primary lymphoma cells from MCL patients with or without resistance was used as a key criterion for screening beneficial therapeutic strategies. Cell apoptosis and cell cycle arrest assays were conducted to further evaluate those effective combinations. Western blot was performed to investigate the mechanism of action of the combinations. Finally, the efficacy of abemaciclib alone or in combination were assessed in ibrutinib-resistant or venetoclax-resistant MCL PDX models in vivo. Results Our preliminary data showed that all MCL cell lines involved in this study were highly sensitive to abemaciclib treatment with IC50 values ranging from 50 nM to 1 µM. Further investigation of abemaciclib cytotoxicity on ibrutinib and/or venetoclax resistant MCL cell lines showed effective inhibition with a higher IC50 values ranging from 5 µM to 10 µM. More importantly, abemaciclib had potent efficacy on cells from primary MCL patients as well as from patients with acquired ibrutinib resistance. Our recent findings revealed that the addition of PI3K inhibitor TGR-1202 significantly enhanced cytotoxicity of abemaciclib in both sensitive and resistant MCL cell lines. Abemaciclib significantly inhibited phosphorylation of Rb1, the active form of the protein, in 4 different MCL cell lines. The active Rb1 maintains the cell in the G1 phase, preventing progression through the cell cycle and acting as a growth suppressor. The result suggests that CDK4/6 inhibition with abemaciclib disrupts CDK4/6 suppressive activity towards pRb-E2F and induce cell cycle arrest in the MCL cells. Interestingly, abemaciclib somehow interrupted phosphorylation of Chk1, which is continuously phosphorylated and hence activated in the MCL cell lines. Inhibiting activation of Chk1 by abemaciclib may induce cell death via unmonitored and accumulated DNA damage. The efficacy of abemaciclib in combination with Bcl-2 or BTK inhibitors in MCL cell lines and isolated cells from MCL patients are ongoing. These data suggest that abemaciclib in combination with other therapeutic drugs could be beneficial in targeting therapeutic resistant MCL cells. Conclusions Abemaciclib showed impressive therapeutic potency on both MCL cell lines and isolated primary cells from MCL patients, which is likely due to the predominant contribution of cyclin D1-CDK4/6 pathway to malignancy. Other agents, such as PI3K inhibitors, can sensitize abemaciclib in therapeutic resistant MCL cells. Thus, an abemaciclib based multi-drug combinational strategy may be a promising therapy for refractory/relapsed MCL patients in the near future. Disclosures Wang: Beijing Medical Award Foundation: Honoraria; Lu Daopei Medical Group: Honoraria; Kite Pharma: Consultancy, Other: Travel, accommodation, expenses, Research Funding; Pulse Biosciences: Consultancy; Loxo Oncology: Consultancy, Research Funding; Targeted Oncology: Honoraria; OMI: Honoraria, Other: Travel, accommodation, expenses; Nobel Insights: Consultancy; Guidepoint Global: Consultancy; Dava Oncology: Honoraria; Verastem: Research Funding; Molecular Templates: Research Funding; OncLive: Honoraria; Celgene: Consultancy, Other: Travel, accommodation, expenses, Research Funding; AstraZeneca: Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding; Oncternal: Consultancy, Research Funding; Juno: Consultancy, Research Funding; BioInvent: Research Funding; VelosBio: Research Funding; Acerta Pharma: Research Funding; InnoCare: Consultancy; MoreHealth: Consultancy; Pharmacyclics: Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding; Janssen: Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 6-7
Author(s):  
Mao Yu Peng ◽  
Yasmin Abaza ◽  
Martina Mcdermott ◽  
Monica Mead ◽  
Dennis J. Slamon ◽  
...  

Background:Recent advances in targeted therapy have expanded the available therapeutic optionsfor patients with AML. However, many patients still have suboptimal outcomes, particularly in the relapsed/refractory setting, underscoring the need for novel therapeutic strategies. Proteasome inhibitors (PIs), such as bortezomib, exhibit antitumor activity in AML through inhibition of the nuclear factor κB pathway and induction of apoptosis. CFZ, a second-generation PI, has preferential preclinical activity in AML compared to bortezomib making it an agent of interest in AML therapy. Here we assessed the activity of CFZ as a single agent and in novel combinations with Ara-C and/or other agents targeting potential vulnerabilities in AML cell lines. Methods:20 AML cell lines were treated with a single dose of CFZ for 7 days, proliferation inhibition was measured using an IC50 cutoff for CFZ of 10 nM. 2 sensitive (ML2 and MV411) and 2 resistant (AML193 and NOMO1) cell lines were selected for further analysis. Apoptosis, cell cycle, and cell senescence analysis were performed after 72 hours of CFZ exposure at 10 nM. Combination assays using CFZ 10 nM and Ara-C 200 nM were performed to evaluate for potential interaction in the form of antagonism or potentiation. Proteomic analysis was performed at baseline using reverse phase protein assay (RPPA). Cell lines were aligned according to CFZ IC50. Several proteins involved in various physiological pathways exhibited a potential correlation with CFZ sensitivity. Combination treatments with CFZ and agents targeting these pathways were carried out in selected cell lines. Results:Single-agent CFZ induced apoptosis with apoptotic rates &gt;85% in sensitive cell lines and only 10% in resistant cell lines. Similarly, CFZ resulted in G0/G1 cell cycle arrest in sensitive, but not resistant AML cell lines. Lack of difference in cellular senescence confirmed apoptosis as the major mechanism of CFZ-induced growth inhibition in AML cell lines. No antagonism was noted when CFZ was combined with Ara-C. RPPA revealed that AML cell lines with higher expression of autophagy-related proteins (Atgs) were more resistant to CFZ treatment. Combining autophagy inhibitor hydroxychloroquine (HCQ) or ROC-325 with CFZ produced a synergistic effect to induce apoptosis in several CFZresistant cell lines. RPPA also revealed that lower basal levels of fatty acid synthase (FASN), a key enzyme involved in lipogenesis, correlated with CFZ sensitivity and CFZ resistant lines tendedto have higher basal FASN levels. The combination of CFZ with a FASN inhibitor resulted in a significant synergistic apoptosis-inducing effect that was observed in the AML lines tested. Conclusion:CFZ demonstrated single agent activity in the nanomolar range in human AML cell lines. The addition of standard-of -care chemotherapy to CFZ did not show antagonism. Combining CFZ with agents targeting autophagy or lipid-metabolism showed synergistic effect in apoptosis. These results suggest a role for CFZ in combination therapeutic strategies for AML patients. Disclosures Mcdermott: TORL Biotherapeutics:Current equity holder in private company;1200 Pharma:Current equity holder in private company.Slamon:TORL Biotherapeutics:Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees;1200 Pharma:Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees;Novartis:Consultancy, Research Funding;Eli Lilly:Consultancy;Bayer:Consultancy, Research Funding;Pfizer:Consultancy, Other: stock, Research Funding;Syndax:Research Funding;Aileron:Research Funding;Genetech:Research Funding;Biomarin:Membership on an entity's Board of Directors or advisory committees;Seattle Genetics:Other: Stock;Amgen:Other: Stock.Larson:BMS, Bioline, Celgene, Juno, Janssen:Research Funding;TORL Biotherapeutics:Current equity holder in private company.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 523-523
Author(s):  
Leandro Cerchietti ◽  
Maria E. Figueroa ◽  
David Meyers ◽  
Philip A. Cole ◽  
Kapil Bhalla ◽  
...  

Abstract DLBCL is the most common form of non-Hodgkin’s lymphoma. Combinations of untargeted chemotherapeutic agents cure between 40–60% of DLBCL patients. We are interested in the rational design of targeted combinatorial therapy for DLBCL using non-chemotherapy agents. Towards this goal we developed an inhibitor of the BCL6 transcriptional repressor, the most commonly involved oncogene in DLBCL. This BCL6 peptide inhibitor (BPI) causes de-repression of BCL6 target genes and kills DLBCL cells. Since single agent targeted therapy is unlikely to cure tumors, we hypothesized that identification of survival pathways triggered by BPI would facilitate rational design of combinatorial biological therapy for DLBCL. In order to identify such pathways we performed gene expression (GE) microarray studies in ten DLCBL cell lines treated with BPI vs. control. Six cell lines were BCL6 positive and four were BCL6 negative. Only the BCL6 positive cells yielded differences in gene expression. Among BPI induced genes was the p300 histone acetyl-transferase. The overlapping genes among the six cell lines were used to generate a BPI response signature. We used this signature to query the Broad Institute Connectivity Map, which contains the GE signature of 164 distinct small-molecule perturbagens. The top scoring classes of drugs were the histone deacetylase inhibitors (HDIs) and HSP90 inhibitors. Considering that BPI is chemically un-related to HDIs or HSP90 inhibitors and that BPI induces p300, we hypothesized that a major biological effect of BPI is to cause the acetylation of HSP90 (which inhibits Hsp90 pro-survival activity) and p53, (which enhances its pro-apoptotic activity). We verified that p300 is a direct BCL6 target gene by ChIP assays, that BPI induces p300 mRNA and protein by QPCR and western blot, and that p300 is silenced in most primary DLBCLs at both the mRNA and protein levels. Accordingly, BPI induced acetylation of Hsp90 and inhibited its function, as demonstrated by the decrease in the abundance of Hsp90 client proteins (AKT/PKB and c-raf). BPI also induced acetylation and functional activity of p53 in a p300-dependent manner (and also induces p53 expression). The importance of p300 was confirmed since a p300-dominant negative construct and the specific p300(HAT) inhibitor Lys-CoA-TAT could block BPI antilymphoma activity. Remarkably, we observed a dose-sequence dependent synergistic effect of BPI followed by Hsp90 inhibitors in killing DLBCL cells. Hsp90 is a relevant target in DLBCL since HSP90?/? protein was expressed in ∼90% of DLBCL patients (n=70). HDIs also increase acetylation of Hsp90 and p53. The HDI drugs SAHA, valproic acid and TSA all profoundly synergized with BPI to specifically eradicate BCL6 positive DLBCL cell lines. In conclusion, we discovered an unexpected mechanistic link between BCL6 and suppression of protein acetylation in lymphomagenesis. This information was harnessed for the rational design of synergistic targeted therapy with BCL6 inhibitors followed by Hsp90 or HDAC inhibitors to target cellular pathways induced by BPI. We anticipate that these drug combinations will result in more potent and less toxic therapeutic treatment of DLBCL, possibly with less or no added chemotherapy.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3300-3300
Author(s):  
Seshagiri Duvvuri ◽  
Vivian Ruvolo ◽  
Duncan H. Mak ◽  
Kensuke Kojima ◽  
Marina Konopleva ◽  
...  

Abstract Abstract 3300 Background: Nutlin-3a is a small molecule inhibitor of MDM2 and has been shown to induce apoptosis and cell cycle arrest in various cancer models in a p53 dependent manner. Autophagy is a programmed cell death that can occur concurrently with apoptosis or in its absence. There is significant debate whether autophagy is a protective mechanism or a bona fide mechanism of cell death. While autophagy can function as tumor cell defense mechanism against cellular stress induced death, mutation/loss of alleles of certain genes regulating autophagy have been associated with development of cancer (e.g. Beclin-1 in breast cancer [Nature, 1999, 402: 672–676]). Multiple proteins involved in autophagy are transcriptional targets of p53 but Nutlin-3a has not been evaluated for its role in inducing autophagy. Here we present data suggesting that low dose Nutlin-3a induces autophagy in addition to apoptosis in leukemia cell lines in a p53 dependent manner. Methods and results: OCI-AML-3 cells (p53-WT) treated with Nutlin-3a (2.5 and 5.0μM for 48, 72 and 96 hrs) were stained with mono-dansyl-cadaverine (MDC), a dye that accumulates in acidic autophagic vacuoles. OCI-AML-3 cells showed increasing staining with MDC in a dose and time dependent fashion by both flow cytometry (54%, 57% and 51% MDC positive after treatment with Nutlin-3a 5.0μM for 48, 72 and 96 hrs) and by confocal microscopy. Nutlin-3a treated cells also were positive for Annexin-V (flow cytometry 22%, 26% and 36% at 48, 72 and 96 hrs time points), and some of the cells were double-positive for Annexin-V and MDC (9.2%, 5% and 7% at 48, 72 and 96 hrs) suggesting that both apoptosis and autophagy can occur simultaneously. Autophagy induction was confirmed by Transmission Electron Microscopy (TEM). Large, multiple autophagic vacuoles were observed in OCI-AML-3 cells treated with Nutlin-3a. OCI-AML-3 cells with stable p53 knockdown by shRNA or HL-60 cells (p53-null) did not show increased MDC staining by flow cytometry (both cell lines) or autophagic vacuoles by TEM (HL-60) after similar treatment. Western blot analysis showed increases in LC3-II and in conjugation of Atg5/12, early and late autophagy markers respectively, in OCI-AML-3 cells after treatment with Nutlin-3a. Increased expression of the autophagy markers (LC3-II and Atg 5/12 conjugate) were also seen by Western blot analysis in the ALL cell lines REH and NALM-6 (both p53-WT) after treatment with Nutlin-3a. Western blot and/or RT-PCR analysis showed upregulation of other p53 related proteins involved in autophagy e.g. DRAM, AMPK-β, LKB1, pLKB1 in OCI-AML-3 cells treated with Nutlin-3a. As mTOR/Akt pathway inhibits autophagy, analysis of mTOR targets showed downregulation of the total and phospho-ribosomal-S6-protein levels, whereas there was no change in total or phospho-4-EBP-1 levels. Knockdown of Beclin-1 (ATG6), one of the proteins required for initiation of the formation of autophagic vacuoles, caused reduction in autophagic vacuoles (MDC staining by confocal microscopy) in OCI-AML-3 and REH cells without affecting apoptosis induction (Annexin V by flow cytometry). Pharmacologic inhibition of late autophagy by Bafilomycin (10nM for 2 hours) reduced MDC staining in OCI-AML-3 cells treated with Nutlin-3a for 48 hrs (32% without and 9% with Bafilomycin) while having limited inhibition of apoptosis (Annexin V positive 42% without and 33% with Bafilomycin). Conclusion: Nutlin-3a induces autophagy in leukemia cells by a p53 dependent manner. We also demonstrate that autophagy could go hand-in-hand with apoptosis and in a fraction of cells both processes may occur concomitantly. Inhibition of autophagy does not necessarily enhance apoptosis. Disclosures: Andreeff: Roche: Research Funding. Borthakur:ASCO: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3734-3734
Author(s):  
Cory Mavis ◽  
Sarah Frys ◽  
Juan Gu ◽  
John Gibbs ◽  
Myron S. Czuczman ◽  
...  

Abstract Abstract 3734 Deacetylases (DACs) are enzymes that remove the acetyl groups from target proteins [histones (class I) and non-histone proteins (class II)], leading to regulation of gene transcription and other cellular processes. Entinostat (MS-275) is a novel and potent DAC class I inhibitor undergoing pre-clinical and clinical testing. In order to better characterize the role of DAC inhibitors in the treatment of refractory/resistant (r/r) B-cell lymphoma, we studied the anti-tumor activity of entinostat as a single agent or in combination with the proteasome inhibitor bortezomib (BTZ) against a panel of rituximab-[chemotherapy]-sensitive cell lines (RSCL), rituximab-[chemotherapy]-resistant cell lines (RRCL), and primary lymphoma cells isolated from patients with treatment-naïve or r/r B-cell lymphoma. In addition, we characterized the mechanisms responsible for entinostat's anti-tumor activity. Non-Hodgkin lymphoma (NHL) cell lines were exposed to escalating doses of entinostat (0.1 to 20uM) +/− BTZ (1–10nM). Changes in mitochondrial potential and ATP synthesis were determined by alamar blue reduction and cell titer glo luminescent assays, respectively. Changes in cell cycle were determined by flow cytometric analysis. Subsequently, protein lysates were isolated from entinostat +/− BTZ exposed cells and changes in members of Bcl-2 and cell cycle family proteins were evaluated by Western blotting. Finally, to characterize entinostat's mechanisms-of-action, lymphoma cells were exposed to entinostat with or without pan-caspase (Q-VD-OPh, 5mM) and changes in cell viability were detected. Entinostat exhibited dose-dependent activity as a single agent against RSCL, RRCL and patient-derived primary tumor cells (N=32). In addition, in vitro exposure of lymphoma cells to entinostat resulted in an increase in G1 and a decrease in S phase. Moreover synergistic activity was observed by combining entinostat with BTZ in vitro. The pharmacological interactions between entinostat and proteasome inhibitor could be explained in part by each agent's effects on the expression levels of cell cycle proteins. In vitro exposure of lymphoma cells to entinostat resulted in p21 upregulation and p53 down-regulation, whereas BTZ exposure lead to up-regulation of Bak and Noxa and downregulation of Mcl-1 and Bcl-XL. Caspase inhibition diminished entinostat anti-tumor activity in RSCL but not in RRCL. Together this data suggests that entinostat has a dual mechanism-of-action and can induce cell death by caspase-dependent and independent pathways. Our data suggests that entinostat as a single agent is active against rituximab-chemotherapy sensitive and resistant lymphoma cells and potentiates the anti-tumor activity of BTZ. A better understanding in the molecular events (caspase-dependent and -independent) triggered by entinostat in combination with proteasome inhibition is important in order to develop optimal combination strategies using these novel agents in future clinical trials. Disclosures: Czuczman: Millennium: Honoraria, Research Funding. Hernandez-Ilizaliturri:Genmab: Research Funding; Amgen: Research Funding; Celgene: Consultancy.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1496-1496 ◽  
Author(s):  
Ilaria Iacobucci ◽  
Andrea Ghelli Luserna Di Rorà ◽  
Maria Vittoria Verga Falzacappa ◽  
Enrico Derenzini ◽  
Anna Ferrari ◽  
...  

Abstract Abstract 1496 Introduction: Although progress in the treatment of ALL has been remarkable in children, in adults ALL still carries a dismal outcome. Thus, there is a need to improve therapeutic options. In the last years, selective inhibitors of Chk1 and/or Chk2 have been discovered, developed and entered in clinical trials. However, so far, they have not yet been investigated in leukemia. Chk1 and Chk2 are serine/threonine kinases that play a critical role in response to DNA damage both by halting the cell cycle through checkpoint activation and by actively repairing DNA. Here, we explored the in vitro and in vivo activity of single-agent inhibition of Chk1/2 by PF-0477736 in B- and T-progenitor ALL and we investigated potential biomarkers of functional inhibition. Methods: Human B (BCR-ABL1-positive: BV-173, SUPB-15; BCR-ABL1- negative: NALM-6, NALM-19, REH) and T (MOLT-4, RPMI-8402, CEM) leukemia cell lines were incubated with increasing concentrations of drug (5–2000 nM) for 24, 48 and 72 hours (hrs). Results: Inhibition of Chk1/2 resulted in a dose and time-dependent cytotoxicity with RPMI-8402 and BV-173 cells being the most sensitive (IC50 at 24 hrs: 57 nM and 82 nM, respectively), while NALM-6 cells the most resistant (IC50 at 24 hrs: 1426 nM)(WST-1 assay, Roche). Sensitivity did not correlate with p53 status (BV-173, SUPB-15, NALM-6 and NALM-19 cells were p53 wild-type whereas REH, MOLT-4, RPMI-8402 and CEM cells were p53 mutated) and with baseline levels of Chk1/2 and ATR/ATM phosphorylation, indicative of intrinsic genetic stress. Consistent with the viability results, Annexin V/Propidium Iodide (PI) staining analysis showed a significant increase of apoptosis at 24 and 48 hrs in a dose and time dependent manner coupled to increased proteolytic cleavage of PARP-1. In all sensitive cell lines in addition to the induction of apoptosis, Chk1/Chk2 inhibition induced DNA damage as demonstrated by the increased number of γH2AX foci (western blot and immunofluorescence analysis) and by a marked phosphorylation of Chk1 (ser317 and ser345). Moreover, PF-0477736 efficiently triggered the Chk1-Cdc25-Cdk1 pathway as soon as 24 hrs of treatment with a decrease of the inhibitory phosphorylation of Cdc25c (ser216) and Cdk1 (tyr15), leading to the abrogation of cell cycle arrest as confirmed by PI staining analysis at 6 and 24 hrs. The efficacy of PF-0477736 was thereafter demonstrated in primary leukemic blasts separated from 14 ALL patients. Based on the viability results at 24 hrs, 3 groups of patients were identified: very good responders, 5/14, 36% (IC50: 100–500 nM); good responders, 6/14, 43% (IC50: 600–1000 nM); poor responders, 3/14, 21% (IC50 > 1000 nM). By contrast, PF-0477736 did not show efficacy in primary cultures of normal bone marrow mononuclear cells, demonstrating its specificity for leukemia cells. We extended the in vitro and ex-vivo studies by assessing the efficacy of Chk inhibition in mice transplanted with T-lymphoid leukemia, demonstrating that PF-0477736 increases the survival of treated mice compared with mice treated with vehicle (p = 0.0016). Finally, in order to elucidate the mechanisms of action of PF-0477736 and to determine biomarkers of response, gene expression profiling analysis (Affymetrix GeneChip Human Gene 1.0 ST) was performed on treated leukemia cells and their untreated counterparts (DMSO 0.1%) after 24 hrs of incubation with concentrations equal to the IC50. Treatment resulted in a differential expression (p < 0.05) of genes involved in chromatin assembly, nucleosome organization and DNA packaging (e.g. Histone H1-H2A, 2B family clusters), DNA damage (DDIT3, GADD34 and GADD45a) and apoptosis (e.g. CDKN1A, BAX, FAS, BTG1), confirming that PF-0477736 contributes to checkpoint replication abrogation, accumulation of DNA damage and subsequent apoptosis in leukemia cells. Interestingly, N-Myc and c-Myc expression strongly decreased after treatment, as also confirmed by western blot analysis, suggesting that a negative feedback loop may exist between Chk induction and Myc expression. Conclusions: Together, these results demonstrate the efficacy of PF-0477736 both in vitro and in vivo models of ALL, arguing in favor of its future clinical evaluation in leukemia. Supported by ELN, AIL, AIRC, Fondazione Del Monte di Bologna-Ravenna, PRIN2009, PIO program, Programma Ricerca Regione-Università 2007–2009. PF-0477736 provided by Pfizer. Disclosures: Baccarani: ARIAD, Novartis, Bristol Myers-Squibb, and Pfizer: Consultancy, Honoraria, Speakers Bureau. Martinelli:NOVARTIS: Consultancy, Honoraria, Speakers Bureau; BMS: Consultancy, Honoraria, Speakers Bureau; PFIZER: Consultancy; ARIAD: Consultancy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5145-5145
Author(s):  
Fabian Freisleben ◽  
Hauke Stamm ◽  
Jana Muschhammer ◽  
Alexander Krispien ◽  
Vanessa Thaden ◽  
...  

Abstract The relevance of the Hedgehog signaling pathway in the pathophysiology of acute myeloid leukemia (AML) has been demonstrated by us and others. Inhibition of the downstream Hedgehog transcription factors GLI1 and GLI2 results in strong anti-leukemic effects. Therefore, Hedgehog pathway inhibitors represent a promising therapeutic approach in AML. Mebendazole is an anthelmintic drug commonly used for the treatment of various parasitic worm infections. Recently, mebendazole has been shown to exhibit strong anti-tumor effects in different cancer entities including AML. In the work presented here, we investigated the effect of mebendazole on expression and activity of GLI transcription factors and its anti-leukemic activity. To determine the effect of mebendazole on GLI transcription factors, we treated the AML cell lines MV4-11, MOLM-13, THP-1 and OCI-AML3 with different concentrations of mebendazole and analyzed its impact on GLI1 and GLI2 protein- and mRNA levels. Furthermore, GLI reporter assays (Cignal GLI Reporter (luc) Kit, Qiagen) were performed to determine the effect of mebendazole on the GLI1 and -2 transcriptional activity. Mebendazole strongly inhibited GLI1 and GLI2 signaling activity in a dose-dependent manner. Exemplarily, treatment with 500 nM mebendazole reduced the GLI1 and -2 transcriptional activity in all cell lines tested by 54.8 % (± 9.6) after 24h and 73.2 % (± 11.6) after 48h. We could demonstrate by Western Blotting that GLI1 and -2 protein levels were clearly reduced 24h and 48h after mebendazole exposure, whereas GLI1 and -2 mRNA levels did not decrease. These data suggest that mebendazole may increase degradation of GLI proteins via the proteasome pathway. Therefore, we evaluated the influence of the 26s proteasome inhibitor bortezomib on GLI levels after mebendazole treatment. Inhibiting the 26s proteasome with 2 nM, 5 nM and 10 nM of bortezomib increased GLI signaling activity by 13.6 % (± 8.0), 84.6 % (± 39.2) and 137.1 % (± 37.9), respectively. Furthermore, 10 nM bortezomib abolished the effect of mebendazole on GLI protein levels. Taken together, mebendazole increased the proteasomal degradation of GLI1 and GLI2. These observations were extended to samples from AML patients. After mebendazole treatment for 24h or 48h all analyzed patients had reductions of GLI1 protein levels as confirmed by Western blotting (n=4), whereas GLI1 and GLI2 mRNA levels were not changed (n=7), indicating that proteasomal degradation was operational in primary blasts as well. Evaluating the anti-leukemic effects of mebendazole, we also investigated its combination with the small molecule GLI inhibitor GANT61. We treated the AML cell lines MV4-11, MOLM-13, THP-1 and OCI-AML3 with combinations of mebendazole and GANT61 and analyzed cell proliferation, apoptosis and colony formation. Mebendazole treatment alone already resulted in decreased proliferation and colony forming capacity as well as increased apoptosis rates in a dose-dependent manner. The combination of mebendazole with the GLI inhibitor GANT61 synergistically increased the anti-proliferative effects of mebendazole on all 4 AML cell lines tested. Additionally, GANT61 further increased the effect of mebendazole on colony formation significantly. Incubation with 100 nM, 200 nM and 500 nM mebendazole inhibited the proliferation of primary blasts from AML patients by 15.1 % (± 7.5), 31.6 % (± 16.8) and 66.0 % (± 17.4), respectively (n=8). Moreover, the combination with GANT61 significantly increased these anti-proliferative effects. This work indicates that mebendazole exerts profound anti-leukemic effects by decreasing GLI1 and GLI2 intracellular levels by promoting its proteasomal degradation. Combining mebendazole with GLI1 and GLI2 inhibitors such as GANT61 enhances this effect considerably. These observations may lead to the introduction of novel treatment strategies in AML. Disclosures Stamm: Amgen Research (Munich) GmbH / Amgen Inc.: Patents & Royalties; Astellas GmbH: Other: Travel Grant. Wellbrock:Amgen Research (Munich) GmbH: Patents & Royalties. Fiedler:GSO: Other: support for meeting attendance; Gilead: Other: support for meeting attendance; Amgen: Other: support for meetíng attendance; Pfizer: Research Funding; Amgen: Research Funding; Amgen: Patents & Royalties; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees; ARIAD/Incyte: Membership on an entity's Board of Directors or advisory committees, support for meeting attendance; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Daiichi Sankyo: Other: support for meeting attendance; JAZZ Pharmaceuticals: Other: support for meeting attendance; Teva: Other: support for meeting attendance.


Sign in / Sign up

Export Citation Format

Share Document