Specific Patterns of DNA Remethylation in the Bone Marrow Cells of Dnmt3a Deficient Mice after Induced Expression of Wild Type Human DNMT3A

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 433-433
Author(s):  
Shamika Ketkar-Kulkarni ◽  
Angela Maria Verdoni ◽  
Nichole Helton ◽  
Christopher B Cole ◽  
Celia Venezia ◽  
...  

Abstract We previously identified recurrent mutations in the de novo DNA methyltransferase DNMT3A in patients with acute myeloid leukemia (AML). The most common DNMT3A mutation in AML (R882H) creates a dominant negative protein that reduces DNA methylation activity by ~80% in AML cells, and causes canonical patterns of DNA hypomethylation in the AML genome (Russler-Germain et al, Cancer Cell 2014). Approaches to restore DNMT3A activity in these AML genomes may be therapeutically relevant, but only if remethylation can return these genomes to their native methylation state. To begin to address whether DNA methylation can be restored in hematopoietic cells that are deficient for Dnmt3a, we performed an Òadd-backÓ experiment using a transgenic mouse model system. First, to characterize the genome-wide effect of Dnmt3a loss on DNA methylation in hematopoietic cells, we carried out whole-genome bisulfite sequencing (WGBS) on the total bone marrow cells of wild type (WT) mice, vs. marrow derived from littermates homozygous for a germline Dnmt3a null mutation (Dnmt3a-/-, Okano et al Cell, 1999), which have overtly normal hematopoiesis. Total bone marrow cells from Dnmt3a-/- mice have a canonical pattern of DNA hypomethylation at specific CpG residues and regions in the genome; many of the CpGs are virtually unmethylated in specific regions, suggesting that the normal Dnmt3a-dependent methylation ÒmarkÓ was added in stem/progenitor cells, and then maintained in all lineages. To define the timing and specificity of remethylation in Dnmt3a-/- mice, we crossed heterozygotes from this line with transgenic mice containing a tetracycline-inducible human wild type DNMT3A cDNA (DNMT3A Tg mice), and a second transgenic mouse containing the rtTA coactivator, expressed from the Rosa26 locus. When DNMT3A Tg+, rtTA+ mice are fed Doxycycline (Dox) chow for one week, WT human DNMT3A is expressed in the marrow at a level ~4 times higher that of endogenous murine Dnmt3a. Since Dnmt3a-/- mice die of severe runting at about three weeks of age, we harvested the marrow cells from Dnmt3a-/-, DNMT3A Tg+, rtTA+mice at 2 weeks of age, and transplanted them into lethally irradiated C57Bl/6 recipients. The marrow was allowed to engraft for four weeks. Half of the mice were then given Dox chow, and half were untreated. Whole bone marrow was isolated from pairs of mice (+ vs. -Dox), DNA was purified, and then subjected to whole genome bisulfite sequencing (WGBS). WGBS produced methylation data on >93% of the CpGs in the mouse reference sequence with a median coverage of 10-12x per sample. Differential methylation analysis was performed on 2 kb tiled windows across the whole genome, revealing 108, 797 differentially methylated regions (DMRs) that were hypomethylated (Table 1). Dnmt3a-/-, DNMT3A Tg+, rtTA+bone marrow from mice without Dox (i.e. no DNMT3A was expressed) demonstrated no evidence for remethylation at any time after transplant. However, if mice were treated with Dox for only 2 weeks, 59% of these DMRs were remethylated, increasing to 70% at 4 weeks, and 83% by week 9. Data from weeks 12 and 24 are pending. Patterns of remethylation for a subset of 560 differentially methylated CpGs (DMCpGs) are shown in Figure 1. These CpGs all had methylation values of >= 90% in WT mouse bone marrow cells, and <=10% in Dnmt3a-/- derived marrow. The methylation patterns for these CpGs is shown as a function of time, after Òadd-backÓ of WT DNMT3A (induced by Dox chow, upper panel). Individual CpGs are tracked by color-coded lines, which show the % methylation at each time point (red = > 66% methylated at a time point, yellow = 33%-66%, and green = < 33%). Most CpGs are remethylated after only 2 weeks of DNMT3A expression, but some are delayed, and become remethylated later (yellow at week 2, changing to red at 4 or 9 weeks). A small subset of these CpGs remethylate very slowly, if at all (green). Without the induction of DNMT3A (-Dox, lower panel), little or no remethylation is detected. Inspection of specific regions of the genome showed that regions that are normally unmethylated in the bone marrow cells of WT mice are rarely methylated by adding back human DNMT3A in this system (data not shown), showing that remethylation is highly specific. Although the mechanisms involved in specifying remethylation patterns are not yet clear, these data may have important implications for therapeutically restoring DNMT3A activity in AML patients with DNMT3A mutations that reduce its activity. Disclosures No relevant conflicts of interest to declare.

2019 ◽  
Vol 5 (10) ◽  
pp. eaax0080 ◽  
Author(s):  
Maria A. Hahn ◽  
Seung-Gi Jin ◽  
Arthur X. Li ◽  
Jiancheng Liu ◽  
Zhijun Huang ◽  
...  

The characteristics of DNA methylation changes that occur during neurogenesis in vivo remain unknown. We used whole-genome bisulfite sequencing to quantitate DNA cytosine modifications in differentiating neurons and their progenitors isolated from mouse brain at the peak of embryonic neurogenesis. Localized DNA hypomethylation was much more common than hypermethylation and often occurred at putative enhancers within genes that were upregulated in neurons and encoded proteins crucial for neuronal differentiation. The hypomethylated regions strongly overlapped with mapped binding sites of the key neuronal transcription factor NEUROD2. The 5-methylcytosine oxidase ten-eleven translocation 2 (TET2) interacted with NEUROD2, and its reaction product 5-hydroxymethylcytosine accumulated at the demethylated regions. NEUROD2-targeted differentially methylated regions retained higher methylation levels in Neurod2 knockout mice, and inducible expression of NEUROD2 caused TET2-associated demethylation at its in vivo binding sites. The data suggest that the reorganization of DNA methylation in developing neurons involves NEUROD2 and TET2-mediated DNA demethylation.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 608-608 ◽  
Author(s):  
David H. Spencer ◽  
Bilal Al-Khalil ◽  
David Russler-Germain ◽  
Tamara Lamprecht ◽  
Nicole Havey ◽  
...  

Abstract Mutations in the de novo DNA methyltransferase DNMT3A are found in ~25% of patients with acute myeloid leukemia (AML) and most commonly affect codon 882 within the catalytic domain of the protein. We have previously shown that this mutation has dominant negative activity in vitro and is associated with hypomethylation at specific CpG dinucleotides in primary AML samples using array-based methylation data. However, the genome-wide extent and patterns of DNA methylation associated with this hypomethylation are currently unknown. In addition, it is unclear if the methylation differences caused by this mutation result in RNA expression changes at specific targets across the genome, or whether they are associated with altered chromatin structure. To explore the genome-wide consequences of the DNMT3A R882H mutation on DNA methylation and chromatin structure, we carried out whole-genome bisulfite sequencing (WGBS) and transposase-mediated chromatin accessibility profiling (ATAC-seq) on 3 primary normal karyotype AML samples with the DNMT3A R882H mutation and 4 matched AML samples without a DNMT3A mutation. All 7 had the NPMc mutation but lacked mutations in other genes involved in DNA methylation, including IDH1, IDH2, and TET2. WGBS produced methylation data on >93% of the CpGs in the human reference sequence with a median coverage of 7-13x. The overall mean methylation was not statistically different in the samples with R882H mutations, although there was a small but statistically significant difference in the methylation at CpGs in CpG islands (DNMT3A R882H mean: 18.1%, DNMT3A wild-type mean: 21.4%; P=0.02). Differential methylation analysis was performed on ~5 million CpG clusters (median of 5 CpGs per cluster; median cluster size of 202 bp) and identified 95,845 differentially methylated clusters with a mean difference >25% and a q-value < 0.01, the majority of which (88,512; 93%) were hypomethylated in the DNMT3A R882H samples. Using more strict criteria (>50% mean difference) and merging differentially methylated clusters within 50 bp, we identified 2,782 differentially methylated regions (DMRs) with a mean size of 255 bp (median of 11 CpGs), of which 97% were hypomethylated. These DMRs were distributed across the genome and were statistically associated with CpG dense regions, including annotated CpG islands and shores (islands: 1,104 of 2,782; 29.9%; shores: 1,118 of 2,782; 30.3%; P<10-10), and gene promoters (816 of 2,782; 23.7%; P< 10-12). Analysis of chromatin accessibility data from 6 samples (3 DNMT3A R882H and 3 DNMT3A wild-type) showed that a subset of the DNMT3A R882H-associated hypomethylated DMRs (366 of 2,704; 13.5%) were located within 100 bp of an ATAC-seq peak unique to DNMT3A R882H AML samples. Further analysis of all DMRs showed ATAC-seq signal enrichment in the R882H samples specifically at hypomethylated loci (Figure 1). Similar enrichment was not observed in the DNMT3A wild-type AMLs at hypomethylated DMRs (N=78), suggesting that hypomethylation caused by the DNMT3A R882H mutation is specifically associated with changes in chromatin structure. Initial analysis of existing PolyA+ RNA-seq data for these AMLs did not reveal canonical expression changes in annotated genes located near the DMRs, implying that methylation and other epigenetic changes might affect distant genes or previously unannotated RNA species that were not present in our dataset. Efforts to sequence all RNA species present in these samples are therefore underway. In summary, we have conducted an initial analysis of genome-wide, CpG-resolution DNA methylation data from primary AML samples with the DNMT3A R882H mutation. This mutation is associated with a genome-wide, focal hypomethylation phenotype that occurs at small, CpG-dense loci across the genome. We also found that many hypomethylated loci are associated with changes in chromatin structure. These findings represent the first evidence that the methylation changes caused by this mutation can have functional consequences on the epigenetic state of specific loci in AML cells, and set the stage for defining the specific events that are responsible for AML pathogenesis in patients who have this mutation. Figure 1 WGBS (bottom tracks) and chromatin accessibility (ATAC-seq, top tracks) from 3 primary AML samples with the DNMT3A R882H mutation (in red) and 3 with no DNMT3A mutation (in blue) at a hypomethylated locus within the HS3ST3B1 gene. Figure 1. WGBS (bottom tracks) and chromatin accessibility (ATAC-seq, top tracks) from 3 primary AML samples with the DNMT3A R882H mutation (in red) and 3 with no DNMT3A mutation (in blue) at a hypomethylated locus within the HS3ST3B1 gene. Disclosures No relevant conflicts of interest to declare.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3395
Author(s):  
Ting Bei ◽  
Xusong Cao ◽  
Yun Liu ◽  
Jinmei Li ◽  
Haihua Luo ◽  
...  

Total body irradiation is a standard procedure of bone marrow transplantation (BMT) which causes a rapid increase in reactive oxygen species (ROS) in the bone marrow microenvironment during BMT. The increase in ROS reduces the engraftment ability of donor cells, thereby affecting the bone marrow recovery of recipients after BMT. In the early weeks following transplantation, recipients are at high risk of severe infection due to weakened hematopoiesis. Thus, it is imperative to improve engraftment capacity and accelerate bone marrow recovery in BMT recipients. In this study, we constructed recombinant copper/zinc superoxide dismutase 1 (SOD1) fused with the cell-penetrating peptide (CPP), the trans-activator of transcription (Tat), and showed that this fusion protein has penetrating ability and antioxidant activity in both RAW264.7 cells and bone marrow cells in vitro. Furthermore, irradiated mice transplanted with SOD1-Tat-treated total bone marrow donor cells showed an increase in total bone marrow engraftment capacity two weeks after transplantation. This study explored an innovative method for enhancing engraftment efficiency and highlights the potential of CPP-SOD1 in ROS manipulation during BMT.


1998 ◽  
Vol 331 (3) ◽  
pp. 733-742 ◽  
Author(s):  
Masafumi YOSHIMURA ◽  
Yoshito IHARA ◽  
Tetsuo NISHIURA ◽  
Yu OKAJIMA ◽  
Megumu OGAWA ◽  
...  

Several sugar structures have been reported to be necessary for haemopoiesis. We analysed the haematological phenotypes of transgenic mice expressing β-1,4 N-acetylglucosaminyltransferase III (GnT-III), which forms bisecting N-acetylglucosamine on asparagine-linked oligosaccharides. In the transgenic mice, the GnT-III activity was elevated in bone marrow, spleen and peripheral blood and in isolated mononuclear cells from these tissues, whereas no activity was found in these tissues of wild-type mice. Stromal cells after long-term cultures of transgenic-derived bone marrow and spleen cells also showed elevated GnT-III activity, compared with an undetectable activity in wild-type stromal cells. As judged by HPLC analysis, lectin blotting and lectin cytotoxicity assay, bisecting GlcNAc residues were increased on both blood cells and stromal cells from bone marrow and spleen in transgenic mice. The transgenic mice displayed spleen atrophy, hypocellular bone marrow and pancytopenia. Bone marrow cells and spleen cells from transgenic mice produced fewer haemopoietic colonies. After lethal irradiation followed by bone marrow transplantation, transgenic recipient mice showed pancytopenia compared with wild-type recipient mice. Bone marrow cells from transgenic donors gave haematological reconstitution at the same level as wild-type donor cells. In addition, non-adherent cell production was decreased in long-term bone marrow cell cultures of transgenic mice. Collectively these results indicate that the stroma-supported haemopoiesis is compromised in transgenic mice expressing GnT-III, providing the first demonstration that the N-glycans have some significant roles in stroma-dependent haemopoiesis.


Blood ◽  
2013 ◽  
Vol 121 (12) ◽  
pp. e90-e97 ◽  
Author(s):  
Mark Wunderlich ◽  
Benjamin Mizukawa ◽  
Fu-Sheng Chou ◽  
Christina Sexton ◽  
Mahesh Shrestha ◽  
...  

Key Points A relevant xenograft chemotherapy model was developed by using standard AML induction therapy drugs and primary human AML patient samples. Human AML cells show significantly increased sensitivity to in vivo chemotherapy treatment compared with murine LSK and total bone marrow cells.


Blood ◽  
1997 ◽  
Vol 90 (6) ◽  
pp. 2148-2159 ◽  
Author(s):  
Harshal H. Nandurkar ◽  
Lorraine Robb ◽  
David Tarlinton ◽  
Louise Barnett ◽  
Frank Köntgen ◽  
...  

Abstract Interleukin-11 (IL-11) is a pleiotropic growth factor with a prominent effect on megakaryopoiesis and thrombopoiesis. The receptor for IL-11 is a heterodimer of the signal transduction unit gp130 and a specific receptor component, the α-chain (IL-11Rα). Two genes potentially encode the IL-11Rα: the IL11Ra and IL11Ra2 genes. The IL11Ra gene is widely expressed in hematopoietic and other organs, whereas the IL11Ra2 gene is restricted to only some strains of mice and its expression is confined to testis, lymph node, and thymus. To investigate the essential actions mediated by the IL-11Rα, we have generated mice with a null mutation of IL11Ra (IL11Ra−/−) by gene targeting. Analysis of IL11Ra expression by Northern blot and reverse transcriptase-polymerase chain reaction, as well as the absence of response of IL11Ra−/− bone marrow cells to IL-11 in hematopoietic assays, further confirmed the null mutation. Compensatory expression of the IL11Ra2 in bone marrow cells was not detected. IL11Ra−/− mice were healthy with normal numbers of peripheral blood white blood cells, hematocrit, and platelets. Bone marrow and spleen contained normal numbers of cells of all hematopoietic lineages, including megakaryocytes. Clonal cultures did not identify any perturbation of granulocyte-macrophage (GM), erythroid, or megakaryocyte progenitors. The number of day-12 colony-forming unit-spleen progenitors were similar in wild-type and IL11Ra−/− mice. The kinetics of recovery of peripheral blood white blood cells, platelets, and bone marrow GM progenitors after treatment with 5-flurouracil were the same in IL11Ra−/− and wild-type mice. Acute hemolytic stress was induced by phenylhydrazine and resulted in a 50% decrease in hematocrit. The recovery of hematocrit was comparable in IL11Ra−/− and wild-type mice. These observations indicate that IL-11 receptor signalling is dispensable for adult hematopoiesis.


2020 ◽  
Author(s):  
Benjamin I Laufer ◽  
Hyeyeon Hwang ◽  
Julia M Jianu ◽  
Charles E Mordaunt ◽  
Ian F Korf ◽  
...  

Abstract Neonatal dried blood spots (NDBS) are a widely banked sample source that enables retrospective investigation into early life molecular events. Here, we performed low-pass whole genome bisulfite sequencing (WGBS) of 86 NDBS DNA to examine early life Down syndrome (DS) DNA methylation profiles. DS represents an example of genetics shaping epigenetics, as multiple array-based studies have demonstrated that trisomy 21 is characterized by genome-wide alterations to DNA methylation. By assaying over 24 million CpG sites, thousands of genome-wide significant (q &lt; 0.05) differentially methylated regions (DMRs) that distinguished DS from typical development and idiopathic developmental delay were identified. Machine learning feature selection refined these DMRs to 22 loci. The DS DMRs mapped to genes involved in neurodevelopment, metabolism, and transcriptional regulation. Based on comparisons with previous DS methylation studies and reference epigenomes, the hypermethylated DS DMRs were significantly (q &lt; 0.05) enriched across tissues while the hypomethylated DS DMRs were significantly (q &lt; 0.05) enriched for blood-specific chromatin states. A ~28 kb block of hypermethylation was observed on chromosome 21 in the RUNX1 locus, which encodes a hematopoietic transcription factor whose binding motif was the most significantly enriched (q &lt; 0.05) overall and specifically within the hypomethylated DMRs. Finally, we also identified DMRs that distinguished DS NDBS based on the presence or absence of congenital heart disease (CHD). Together, these results not only demonstrate the utility of low-pass WGBS on NDBS samples for epigenome-wide association studies, but also provide new insights into the early life mechanisms of epigenomic dysregulation resulting from trisomy 21.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 87-88
Author(s):  
Luiz F Brito ◽  
Jacob M Maskal ◽  
Shi-Yi Chen ◽  
Hinayah R Oliveira ◽  
Jason R Graham ◽  
...  

Abstract In utero heat stress (IUHS) has several postnatal consequences in pigs that compromise health, increase stress response, and reduce performance. These phenotypes may be caused by epigenetic modifications such as DNA methylation, which are heritable molecular modifications that impact gene expression and phenotypic outcomes without changing the DNA sequence. Therefore, we aimed to compare the DNA methylation profiles between in-utero thermoneutral (IUTN) and IUHS pigs to identify differentially methylated regions. Twenty-four pregnant gilts were evenly assigned to either a thermoneutral (17.5 ± 2.1°C) or heat stress (cycling 26 to 36°C) chamber from d 0 to 59 of gestation, followed by thermoneutral conditions (20.9 ± 2.3°C) for the rest of gestation and until the piglets were weaned. At 105 d of age, 10 IUTN and 10 IUHS piglets were euthanized and Longissimus dorsi muscle samples were collected and used to perform whole-genome bisulfite sequencing (WGBS). Purified genomic DNA was fragmented and bisulfite conversion was performed. Illumina platforms were used to sequence WGBS libraries. All pigs had similar proportions of methylation at CpG sites. Two-hundred-sixty-eight genomic regions were differentially methylated between IUTN and IUHS pigs. These identified regions are located across all pig chromosomes and ranged from 2 (SSC18) to 40 (SSC10). Eighty-five unique differentially-methylated genes were identified. These genes have been reported to be involved in key biological processes such as transcriptional repressor activity and tRNA processing (e.g., SKOR2,TRMT6, TSEN2), cellular response to heat stress (e.g.,CCAR2), placental vascularization (e.g.,FZD5), central nervous system (e.g.,VEPH1), cholesterol biosynthesis (e.g., CYB5R1), insulin receptor substrate (e.g.,IRS2), synaptic transmission (e.g.,RIMBP2), neurotrophic factor receptor activity (e.g.,LIFR), immune response (e.g., CD84), DNA repair (e.g., CHD1L), and cell proliferation and endocrine signaling (e.g., SSTR1, CYB5R1). These findings contribute to a better understanding of the epigenomic mechanisms underlying postnatal consequences of IUHS in pigs.


Sign in / Sign up

Export Citation Format

Share Document