HSP70, the Key to Account for Erythroid Tropism of Diamond-Blackfan Anemia?

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 671-671
Author(s):  
Marc Gastou ◽  
Sarah Rio ◽  
Mickael Dussiot ◽  
Narjesse Karboul ◽  
Thierry Leblanc ◽  
...  

Abstract Diamond-Blackfan anemia (DBA) was the first ribosomopathy identified and is characterized by a moderate to severe, usually macrocytic aregenerative anemia associated with congenital malformations in 50% of the DBA cases. This congenital rare erythroblastopenia is due to a blockade in erythroid differentiation between the BFU-e and CFU-e stages. The link between a haploinsufficiency in a ribosomal protein (RP) gene that now encompass 15 different RP genes and the erythroid defect is still to be fully defined. Recently, mutations in TSR2 and GATA1 genes have been identified in a few DBA families. The GATA1 gene encodes for the major transcription factor critical for erythropoiesis and mutation in this gene that lead to loss of expression of the long form of the protein, necessary for the erythroid differentiation accounts for erythroblastopenia of DBA phenotype. Our group and others (Dutt et al., Blood 2011) have shown previously that p53 plays an important role in the DBA erythroblastopenia, inducing cell cycle arrest in G0/G1 and depending on the nature of RP gene mutation, a delayed erythroid differentiation and an increased apoptosis. Indeed, we identified two distinct DBA phenotypes (H. Moniz, M. Gastou, Cell Death Dis, 2012): a haploinsufficiency in RPL5 or RPL11 reduced dramatically the erythroid proliferation, delayed the erythroid differentiation, and markedly increased apoptosis, while RPS19 haploinsufficiency while reduced the extent of erythroid proliferation without inducing significant apoptosis. While p53 pathway has been found to be activated in RP haploinsufficient erythroid cells in DBA patients or shRNA-RPS19, -RPL5, or -RPL11 infected CD34+ erythroid cells, the intensity of the p53 activation pathway (p21, BAX, NOXA) is different depending on the mutated RP gene. Since the differences between the two phenotypes involved the degree of apoptosis we hypothesized that HSP70, a chaperone protein of GATA1 may play a key role in the erythroid defect of DBA. Indeed, HSP70 protects GATA1 from the cleavage by the caspase 3, a protease activated during erythroid differentiation and as such reduced levels of HSP70 related to a RP haploinsufficiency could account for increased apoptosis and delayed erythroid differentiation of erythroid cells in DBA. Indeed, a defect in RPL5 or RPL11 decreased dramatically the expression level of HSP70 and GATA1 in primary human erythroid cells from DBA patients and following in vitro knockdown of the proteins in CD34+ cells by RPL5 or RPL11 shRNA. Importantly, RPS19 haploinsufficiency did not exhibit this effect in conjunction with normal levels of HSP70 expression. Furthermore, we found that the decreased expression level of HSP70 was independent on the p53 activation. Strikingly, HSP70 was noted to be degraded by the proteasome since the bortezomib, the MG132, or the lactacystin were able to restore both the HSP70 expression level and intracellular localization in the cell. The lentiviral infection of haploinsufficient RPL5 or RPL11 cord blood CD34+ cells with a wild type HSP70 cDNA restored both the erythroid proliferation and differentiation confirming a critical role for HSP70 in the erythroid proliferation and differentiation defect in the RPL5 or RPL11 DBA phenotypes. The loss of HSP70 may explain the loss of GATA1 in DBA and also the erythroid tropism of the DBA disease. Restoration of the HSP70 expression level may be a viable and novel therapeutic option for management of this debilitating and difficult to manage erythroid disorder. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3548-3548
Author(s):  
Aurore Cretien ◽  
Patricia Rince ◽  
Thierry Leblanc ◽  
Rolande Ducrocq ◽  
Alexis Proust ◽  
...  

Abstract Mutations in ribosomal protein S19 (RPS19) gene have been found in 25% of patients affected with Diamond-Blackfan anemia (DBA). Two of the RPS19 mutations identified in DBA patients are located in the sequence upstream of the translational start site: a missense mutation g->t at −460 and a 4 bp insertion, gcca, 3 nt upstream of the 5′ end of the RPS19 promoter. All of the RPS19 mutations identified to date are expressed in the heterozygous state. In the present study, in a DBA patient from Ivory Coast we identified the gcca insertional mutation on both alleles. Diagnosis of DBA was made at the age of 3 months. No malformations were noted. The patient responded neither to steroid nor to IL-3 therapies. The patient was regularly transfused but without an effective iron chelation therapy. As a consequence DBA was complicated by a severe hemochromatosis with thyroid, parathyroid, and liver damage. The patient was enrolled into a metoclopramide protocol in our hospital when he was 12 year old. He had a partial response, with increased time intervals between transfusions. While analysis of the RPS19 gene did not identify a mutation in the coding sequence, the 4 bp insertion, gcca at nt − 631 was noted on both alleles. Mother was heterozygous for this mutation and strikingly the father was homozygous. Both parents are apparently healthy. In screening of 200 Caucasian control chromosomes and 100 chromosomes from Ivory Coast we did not identify the 4bp insertion, ruling out the possibility that it is a common polymorphism. A parental disomy was eliminated by a genescan microsatellite analysis using the microsatellites: D19S200, D19S197, and LIPE. To evaluate the effect of this mutation on erythroid differentiation, we isolated 30,000 CD34+ cells from peripheral blood of the patient and normal individuals. CD34+ cells were cultured for 7 days in methylcellulose with EPO, SCF, and IL-3. At day 7, erythroid colonies were isolated and cultured for additional 3 and 5 days in liquid medium. At D7, D10 and D12, aliquots of cells were collected and cloning efficiency and apoptosis was quantitated. RPS19 mRNA was assayed by quantitative RT-PCR and level of protein expression determined by Western blot analysis. The cloning efficiency of DBA erythroid progenitors was decreased by 2.6 fold compared to normal between D7 and D10 and by 3.5 fold between D10 and D12. No difference in apoptosis was noted between DBA and normal erythroid progenitors. Strikingly, during terminal erythroid differentiation, RPS19 mRNA and protein expression levels was similar in the DBA and normal erythroid cells. The presence of the homozygous mutation in the healthy father in conjunction with normal expression of RPS19 in the DBA erythroid cells imply that the gcca insertion at nt −631 is not deleterious and cannot by itself account for the DBA phenotype of our patient.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4731-4731
Author(s):  
Hai Wang ◽  
Yadong Yang ◽  
Hongzhu QU ◽  
Xiuyan Ruan ◽  
Zhaojun Zhang ◽  
...  

Abstract Abstract 4731 FOX (Forkhead box) proteins are a family of transcription factors that emerged as playing an important role in the embryonic development, cell cycle, carbohydrate and fatty acid metabolism and immune response. It was found that FOXO3A (also known as FOXO3) involved in erythroid differentiation, yet the mechanism for regulating hematopoietic stem cells (HSCs) differentiation is unknown. We analyzed the dynamics of genome-wide transcriptome (mRNA-Seq) of human undifferentiated embryonic stem cells (HESC), erythroid cells derived from ES cells (ESER), human fetal erythroid liver cells (FLER) and peripheral CD34+derived erythroid cells (PBER) using high throughput sequencing technology. The transcriptome analysis showed that FOXO3 was barely expression in HESC while was observably up-regulated in ESER. However, FOXO3 was down-regulated in FLER and PBER compare with ESER, the erythroid cells at early developmental stage. We presumed that FOXO3 plays an important role in primitive erythropoiesis and built up the interactions network in which FOXO3 acts as a central node by Gene Ontology (GO), correlation analysis and Ingenuity Pathways Analysis (IPA). In addition, we analyzed the profiles of histone methylation in the four types of cells by ChIP-Seq to study the chromatin conformation in the vicinity of FOXO3. More histone 3 lysine 4 (H3K4) trimethylation was found near the promoter region of FOXO3 in ESER compared with the other cells, which is coincided with the mRNA-seq results. We performed a series of experiment to identify the roles of FOXO3 in regulating erythroid differentiation. The results showed that the expression level of ε and γ globin were up-regulated in FOXO3-over-expressed 293T and Hela cells and the expression level of FOXO1 and CAT in predicted network were increased by quantitative real-time PCR detection. In addition, when FOXO3 knocked down in K562 cells, the expression level of ε and γ globin were down-regulated. The expression level of CAT, BCL2L1 and other factors in predicted network, were also decreased. These results indicate FOXO3 plays an important role in globin expression and identify the credibility of our predicted networks in which FOXO3 acts as a central node. FOXO3 binding sites (GTAAACA or ATAAACA) were predicted on the upstream of CAT and BCL2L1. We are trying to prove CAT or BCL2L1 is a direct FOXO3 target in vitro and in vivo. In conclusion, we have demonstrated FOXO3 plays a key role in erythroid differentiation and globin expression. We will further determine the enriched profiles of FOXO3 by ChIP-seq in HESC, ESER, FLER and PBER to find more targets of FOXO3. Since the zebrafish is a powerful model system for investigating vertebrate hematopoiesis. We will identify the role of Foxo3b, the homologous gene of human FOXO3, in erythroid differentiation and study the dynamic transcriptomes of Foxo3b morphants in zebrafish. We are trying to make a whole picture to elaborate the molecular mechanism of FOXO3 involved in regulation of erythroid differentiation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 719-719
Author(s):  
Johan Flygare ◽  
Thomas Kiefer ◽  
Koichi Miyake ◽  
Taiju Utsugisawa ◽  
Isao Hamaguchi ◽  
...  

Abstract Diamond-Blackfan anemia (DBA) is a congenital red cell aplasia in which 25% of the patients have a mutation in the ribosomal protein S19 (RPS19) gene. It is unknown how the ribosomal protein deficiency leads to anemia. We previously developed three lentiviral vectors expressing siRNA against RPS19 and one scramble control vector. All vectors also express GFP. We have previously shown that transduction of CD34+ bone marrow (BM) cells with the siRNA vectors reduced RPS19 mRNA levels, resulting in formation of fewer erythroid colonies. In the present study, we have demonstrated downregulation of RPS19 protein in siRNA treated cells. RPS19 protein levels decreased over time and were reduced to 40-60% of normal in cells transduced with all three siRNA vectors 5 days after transduction. We asked which stage of erythroid development is most affected by RPS19 deficiency. After 7 days in liquid culture supporting erythroid differentiation Glycophorin A (GlyA) and CD71 expression was examined by FACS. RPS19-silenced as well as DBA patient CD34+ cells exhibited a block in erythroid differentiation seen as an increased fraction of GlyAneg CD71low cells while the fractions of CD71high GlyAintermediate and GlyAhigh cells decreased. We cultured untransduced CD34+ cells in liquid culture for 7 days and isolated CD71high GlyA intermediate cells that are highly enriched in CFU-E and do not contain BFU-E. These cells were transduced with RPS19 siRNA vectors. Further erythroid maturation from CFU-E (CD71high GlyAintermediate) to more mature erythroid cells (GlyAhigh) was not affected by RPS19 silencing suggesting that the main block in erythroid development occurs prior to the CFU-E formation. The failure of erythroid differentiation correlated with the decrease in RPS19 protein levels. Transduction with a lentivirus expressing an siRNA-resistant RPS19 transcript rescued both the erythroid progenitor proliferation and differentiation, showing that the DBA-like phenotype is specific to the RPS19 deficiency. Finally we cultured the cells in liquid medium supporting both erythroid and myeloid differentiation. Proliferation decreased while the ratio of mature myeloid to erythroid cells increased 3 fold in cells transduced with the 2 most efficient siRNA-vectors, meaning that erythroid development is more sensitive to low RPS19 levels than myeloid development. When RPS19 is downregulated to intermediate levels, erythroid differentiation and proliferation of erythroid progenitors is severely reduced. More severe reduction of RPS19 impairs proliferation of myeloid progenitors as well, leading to a reduced output of myeloid progeny. Although our data cannot rule out hypothetical extraribosomal mechanisms we suggest that the major clinical findings in RPS19 deficient DBA can be explained by insufficient protein translation. This study shows for the first time that RPS19 protein downregulation decreases the proliferative capacity of hematopoietic progenitors leading to an early defect in erythroid development.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2591-2591
Author(s):  
Mark C Wilkes ◽  
Kaoru Takasaki ◽  
Minyoung Youn ◽  
Hee-Don Chae ◽  
Anupama Narla ◽  
...  

Abstract Diamond Blackfan Anemia (DBA) is a congenital bone marrow failure syndrome. The disease usually presents within the first year of life and is associated with anemia, congenital abnormalities, and an increased risk of developing cancer. The most prevalent mutations are found in the ribosomal protein RPS19, accounting for over 25% of cases but approximately 70% of DBA patients carry mutations in ribosomal genes. Downregulation of GATA1 has been attributed to the disease, but the upstream mechanisms leading to aberrant erythropoiesis is only beginning to be elucidated. SATB1 is highly upregulated in lymphocytes (especially thymocytes) and steadily downregulated in all myeloid ineages during differentiation. However the more modest expression of SATB1 in early progenitors is required for self-renewal of HSCs and globin switching in early erythropoiesis. Using transcriptomics, we identified SATB1 expression is prematurely lost in RPS19-insufficient erythropoiesis and that over a third (16/42) of RPS19-sensitive early erythroid genes were rescued upon SATB1 re-expression. One of the most deregulated transcripts encode the chaperone HSP70. GATA1 is an essential master regulator in erythroid differentiation and high GATA1 protein levels are required for efficient erythropoiesis. In DBA, GATA1 protein expression is drastically diminished. Two mechanisms contribute to this. At the translational level, GATA1 transcripts fail to be translated adequately due to ribosomal inefficiency at binding short, unstructured 5'UTRs. At the protein level,HSP70 loss leads to reduced GATA1 protein stability. During healthy erythropoiesis HSP70 genes are drastically upregulated (3.21, 4.18 and 1.37- fold) and this is lost in RPS19 insufficiency. Here we report that upregulation of HSP70 in healthy erythropoiesis requires SATB1. SATB1 binds to 3 sites within a 40kb region surrounding the HSP70 gene loci and recruits a distal predicted enhancer element to the proximal promoters via formation of two chromatin loops. During RPS19-insufficiency this chromatin organization is lost, but SATB1 re-expression restores chromatin looping and HSP70 expression, stabilizing GATA1 and promoting efficient erythropoiesis. As with HSP70, it is likely that permissive chromatin organization is essential for other RPS19-sensitive erythroid genes rescued by SATB1 re-expression. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 133 (12) ◽  
pp. 1358-1370 ◽  
Author(s):  
Sarah Rio ◽  
Marc Gastou ◽  
Narjesse Karboul ◽  
Raphaёl Derman ◽  
Thunwarat Suriyun ◽  
...  

AbstractDiamond-Blackfan anemia (DBA) is a congenital erythroblastopenia that is characterized by a blockade in erythroid differentiation related to impaired ribosome biogenesis. DBA phenotype and genotype are highly heterogeneous. We have previously identified 2 in vitro erythroid cell growth phenotypes for primary CD34+ cells from DBA patients and following short hairpin RNA knockdown of RPS19, RPL5, and RPL11 expression in normal human CD34+ cells. The haploinsufficient RPS19 in vitro phenotype is less severe than that of 2 other ribosomal protein (RP) mutant genes. We further documented that proteasomal degradation of HSP70, the chaperone of GATA1, is a major contributor to the defect in erythroid proliferation, delayed erythroid differentiation, increased apoptosis, and decreased globin expression, which are all features of the RPL5 or RPL11 DBA phenotype. In the present study, we explored the hypothesis that an imbalance between globin and heme synthesis may be involved in pure red cell aplasia of DBA. We identified disequilibrium between the globin chain and the heme synthesis in erythroid cells of DBA patients. This imbalance led to accumulation of excess free heme and increased reactive oxygen species production that was more pronounced in cells of the RPL5 or RPL11 phenotype. Strikingly, rescue experiments with wild-type HSP70 restored GATA1 expression levels, increased globin synthesis thereby reducing free heme excess and resulting in decreased apoptosis of DBA erythroid cells. These results demonstrate the involvement of heme in DBA pathophysiology and a major role of HSP70 in the control of balanced heme/globin synthesis.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 159-159
Author(s):  
Hongxia Yan ◽  
Yaomei Wang ◽  
Jie Li ◽  
Xiaoli Qu ◽  
Yumin Huang ◽  
...  

Abstract TET family proteins (TET1, TET2 and TET3) have recently emerged as important epigenetic modifiers by catalyzing the conversion of 5-methylcytosine (5mc) to 5-hydroxymethylcytosine (5hmc). Although they have been documented to play important roles in a variety of biological processes, their function in erythroid differentiation has yet to be defined. In the present study, we show that of the three TET family members, TET2 and TET3 but not TET1 are expressed in erythroid cells and that TET3 is more abundantly expressed than TET2. Using shRNA-mediated knockdown approach we explored the role of TET proteins in erythroid differentiation of CD34+ human cells. We first showed that consistent with their role in the production of 5hmc, knockdown of either TET2 or TET3 led to a decrease in global 5hmc levels as assessed by mass spectrometric analysis. However, knockdown of TET2 or TET3 resulted in distinctly different phenotypic changes during erythropoiesis. Knockdown of TET3 in human CD34+ cells resulted in impaired cell growth which is accompanied by increased apoptosis of late stage erythroblasts. Knockdown of TET3 also led to generation of bi/multinucleated polychromatic/orthochromatic erythroblasts which is accompanied by impaired enucleation. To explore the molecular mechanisms for the observed phenotypic changes, we performed RNA-seq analysis on control and TET3 knockdown erythroblasts at same stages of development. Bioinformatics analysis revealed that the expression levels of several apoptosis-promoting genes such as FOXO1, TNFRSF10B, TGFB1 and BTG1 are increased and that of a mitosis/cytokinesis associated gene KLHDC8B is decreased in polychromatic and orthochromatic erythroblasts following TET3 knockdown. Measurement of 5hmc and 5mc at promoter region of KLHDC8B locus revealed decreased 5hmc level concurrent with increased 5mc level. Importantly, knockdown of KLHDC8B in CD34+ cells as with knockdown on TET3 led to generation of increased numbers of bi/multinucleated polychromatic/orthochromatic erythroblasts and impaired enucleation implying a role for this protein in cytokinesis of late stage but not early stage erythroblasts. These findings demonstrate that TET3 regulates erythropoiesis in a stage-specific manner by targeting different set of genes. Importantly, knockdown of TET2 led to phenotypic changes that were very different from that seen following knockdown of TET3 but the observed changes are similar to the erythroid development defects noted in myelodysplastic syndromes (MDS). These include hyper-proliferation of early stage erythroid cells; delayed terminal erythroid differentiation and increased apoptosis of late stage erythroblasts. Together with the fact that TET2 gene mutation is one of the most common mutations in MDS and dyserythropoiesis is a hallmark of this disorder, our findings suggest that TET2 gene mutations can directly account for dyserythropoiesis of MDS. Our findings demonstrate distinct and important roles for TET2 and TET3 in regulating erythropoiesis and provide significant new and novel insights into epigenetic regulation of erythropoiesis at distinct development stages. The findings are likely to be very useful for furthering our understanding of epigenetic regulation of normal and disordered human erythropoiesis. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2455-2455
Author(s):  
Shogo Miura ◽  
Masayoshi Kobune ◽  
Soushi Ibata ◽  
Masahiro Yoshida ◽  
Satoshi Iyama ◽  
...  

Abstract Background. It has been reported that iron absorption from gastrointestinal tract was enhanced in a subset of patients with myelodysplastic syndrome (MDS) exhibiting ineffective erythropoiesis. Iron absorption was achieved via an iron transporter ferroportin which was downregulated by hepcidin. Recently, three erythroid regulators such as growth differentiation factor 15 (GDF15), twisted gastrulation protein homolog 1 (TWSG1) and erythroferrone (ERFE) which down regulated hepatic hepcidin production has been identified. However, it has been not yet clarified which molecules could contribute to the increased iron absorption in patients with MDS. Materials and Methods. In the present study, we examined the expression level of GDF15, TWSG1 and ERFE mRNA during ex vivo erythroid differentiation from CD34+ bone marrow (BM) cells in the presence of 4 U/mL erythropoietin (EPO), 100 U/mL interleukin-3, 10 ng/mL stem cell factor, 20 ng/mL insulin-like growth factor (IGF)-1 and 500 micro g/mL iron-saturated transferrin. We further analyzed the expression level of GDF15 and ERFE in BM mononuclear cells (MNCs) derived from BM derived from MDS patients and lymphoma patients without BM involvement as a control by using quantitive RT-PCR. The expression of EPO-R was analyzed by flow cytometry. The CD34+ MDS cells were seeded on fibronectin substratum in 5 mL of a serum-free medium supplemented with 50 ng/mL human thrombopoietin (TPO), 10 ng/mL human SCF, 50 ng/mL human Fms-related tyrosin kinase 3 ligand (FLT3LG) and 100 ng/mL human delta like protein 4 (DLL4) with or without 4 U/mL EPO. For analysis of CD34+ cells, a GEO dataset (GSE58831) was downloaded as a matrix by GEOquery package (Bioconductor). The numerical data of the matrix were normalized by quantile normalization using limma package. Clinical and sequencing data were downloaded from supplementary materials. Those were combined with a GEO dataset (GSE58831) before analysis. Results. The level of ERFE mRNA was dramatically increased during erythroid differentiation from control CD34+ cells in response to EPO in vitro (Figure 1) although increase of the level of GDF15 and TWSG1 was marginal. Moreover, the level of ERFE mRNA in BM MNCs derived from MDS patients was significantly higher than that from control. Furthermore, the expression level of ERFE mRNA correlated with the percentage of CD34+ cells, but not percentage of erythroblasts derived from MDS patients. Using GEO data sets (GSE58831), the level of ERFE mRNA in CD34+ cells derived from MDS patients was significantly elevated as compared with that from healthy volunteers. Importantly, flow cytometric analysis indicated that CD34+ MDS cells highly expressed EPO receptors and the level of ERFE mRNA in CD34+ cells in a subset of MDS patients was enhanced after exposure of EPO ex vivo. In addition, the level of ERFE mRNA positively correlated with the level of EPO-R in CD34+ MDS cells (GSE58831). Conclusion. These results indicated that CD34+/EPO-R+ double positive MDS cells is one of the major sources of ERFN. The level of ERFE in CD34+ MDS cells may be associated with abnormal iron metabolism in MDS patients. These finding may be important for understanding the abnormal iron metabolism and predicting the efficacy of EPO administration. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1214-1214
Author(s):  
Husam Qanash ◽  
Kaari Linask ◽  
Jeanette Beers ◽  
Keyvan Keyvanfar ◽  
Sara Young-Baird ◽  
...  

Diamond Blackfan Anemia (DBA) is a congenital bone marrow (BM) failure syndrome primarily characterized by defective erythropoiesis. In most patients, pathogenic heterozygous mutations have been identified in genes encoding ribosomal proteins (RP). The resulting RP haploinsufficiency was recently shown to delay globin protein translation in erythroid cells, whereas synthesis of heme, the nonprotein iron-containing component of hemoglobin, proceeds normally (Yang et al., Sci Transl Med 2016). Because heme is first synthesized at or just before the proerythroblast stage, free heme is in excess of globin in these cells. High levels of free heme induce proerythroblast cell death, and erythroid differentiation thus halts at the earlier BFU-E/CFU-E progenitor stage. Consistent with these observations, inhibition of heme synthesis with succinylacetone was previously shown to improve erythroid differentiation of DBA marrow cells in vitro. In this study, we investigated whether eltrombopag (Epag), an FDA-approved mimetic of thrombopoietin that promotes trilineage hematopoiesis in subjects with acquired BM failure (Olnes et al., NEJM 2012; Townsley et al., NEJM 2017), could rescue erythropoiesis in DBA. We hypothesized that Epag might inhibit heme synthesis by restricting iron availability due to its robust intracellular iron chelating properties, leading to decrements in iron-induced reactive oxygen species (ROS) and increased proerythroblast survival and maturation. To test this possibility,we first established an induced pluripotent stem cell (iPSC) model of DBA by reprogramming mononuclear cells (MNCs) from a patient with inactivating mutations in RPS19, the most commonly mutated gene in DBA. We also generated a control isogenic iPSC line by CRISPR/Cas9-mediated correction of RPS19 point mutations in the established DBA iPSC line.RPS19 haploinsufficiency was confirmed by Western blot and the expected reduction in 40S/60S ribosomal subunit ratio was detected by polysome profiling of DBA iPSCs. This phenotype normalized in the isogenic iPSCs. Both DBA and isogenic iPSC lines, and iPSCs derived from a healthy donor, were then subjected to hematopoietic differentiation for 21 days using the STEMdiffTMmonolayer-based approach (Ruiz et al., BioRxiv 2019). Hematopoietic cells were harvested between day 19 and 21 of culture when maximum erythroid production is observed in this system. Normal and isogenic iPSCs efficiently gave rise to erythroid cells at various stages of maturation, including CD71+CD45+EPOR+primitive erythroid progenitors (P1), CD71+CD45loEPOR-proerythroblasts (P2), and more mature CD71+CD45-EPOR-erythroblasts (P3) (Figure). In contrast, the majority of erythroid cells detected after differentiation of DBA iPSCs were comprised within P1 with limited maturation to P2 and P3, consistent with a block in differentiation at the early erythroid progenitor stage (Figure). Furthermore, in colony forming unit (CFU) assays, DBA iPSCs generated numbers of myeloid colonies (CFU-G, CFU-M and CFU-GM) comparable to normal and isogenic iPSCs, but erythroid colonies (BFU-E and CFU-E) were undetectable, in keeping with DBA progenitor's inability to differentiate in vitro. Next, DBA iPSCs were differentiated in the presence of Epag 3 µg/mL from day 10 to 21 of culture. Addition of Epag improved late erythroid maturation, as indicated by reduced percentages of early progenitors (P1) and a concomitant increase in more mature P2 and P3 erythroblastic populations (Figure). Investigations are ongoing to confirm Epag-mediated iron restriction and decreased heme synthesis as the primary molecular mechanism underpinning the improved erythroid maturation observed in this study. Overall, our data indicate that directed differentiation of DBA iPSCs recapitulates early erythroid maturation defects in vitro, and erythropoiesis can be rescued in part by addition of Epag during culture. These results suggest that Epag may improve red blood cell production in patients with DBA. Figure Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3567-3567
Author(s):  
Tatiana Ulyanova ◽  
Gregory V. Priestley ◽  
Yi Jiang ◽  
Stephen Padilla ◽  
Thalia Papayannopoulou

Abstract Previous experiments in vitro have emphasized the important role of a5b1 integrin/fibronectin interactions in terminal stages of erythroid differentiation (JCB1987, 105:3105), whereas in vivo experiments with genetically deficient mice (JI2000, 165:4667) and recent in vitro ones emphasized the important contribution of a4b1 integrin in the expansion of fetal erythroid progenitors (JCB2007, 177:871) or for optimal responses post stress in adult animals (MCB2003, 23:9349). However, no abnormalities in erythropoiesis were reported in a model of conditional ablation of b1 integrins post-transplantation (Blood2006, 108:1857). Therefore, it has not been clear to what extent each of the two major b1 integrins (a4b1 and a5b1) alone or in combination is critical for expansion and/or terminal erythroid differentiation of adult cells at homeostasis and/or after stress. We have made detailed and parallel observations comparing erythropoiesis in two genetic models with conditional ablation of b1 or a4 integrins at homeostasis and after phenylhydrazine (PHZ)-mediated stress. Basal erythropoiesis in b1-, a4-deficient and control mice as assessed by hematocrit levels and total nucleated erythroid cells (Ter119+) in BM and spleen was similar. Furthermore, both b1 and a4-deficient mice showed an increase in circulating progenitors (1275±230 CFC/ml PB, 2446±256 CFC/ml PB, respectively) over controls (338±113 CFC/ml PB). However, post PHZ-induced hemolytic stress there was a dramatic difference in outcomes of b1-deficient, but modest differences in a4-deficient mice compared to controls. Survival of b1-deficient mice by day 6 post PHZ was 33% compared to 100% in a4-deficient and control groups. In b1-deficient animals, no significant increase in spleen cellularity (153±26×106 and194±64×106 cells/spleen at day 0 and 6 post PHZ, respectively) was detected and the expansion of total erythroid precursors (CD71hi,Ter119+) in the spleen was minimal (from 2.08×106 to 10.8×106 cells/spleen at day 6). In contrast, in a4-deficient and control mice by the same time spleen cellularity increased respectively by 3 and 8 fold, and erythroid precursors expanded by 400 and 2,500 fold. Of interest, BM response to PHZ was not significantly different among all groups. To test whether the splenic response was cell-autonomous or environmentally controlled we compared PHZ response in wild type recipients reconstituted with b1-ablated (Cre+b1D/D) or with control (Cre-b1f/f) BM cells. Recipients of b1-ablated cells had an impaired response compared to recipients of control cells, which was somewhat intermediate to that seen in non-transplanted b1-deficient animals; by day 6 post PHZ, spleen cellularity was 300±24×106 cells/spleen and erythroid precursors expanded by 130 fold in recipients of b1-ablated BM cells compared to 859±159×106 cells/spleen and 900 fold precursor increase in control recipients. These data suggest that both erythroid and their environmental cells were responsible for the reduced survival and poor spleen response in b1-deficient mice. The target environmental cells (fibroblasts, endothelial cells, macrophages) and/or matrix involved will be the focus of future studies. It is of interest that in contrast to splenic response, the increased release of progenitors from BM seen in animals reconstituted with b1D/D cells was as high as that seen in non-transplanted b1- deficient animals and with the same qualitative characteristics, suggesting this alteration in biodistribution of progenitors is cell autonomous. Taken together, our data suggest that a combined expression of b1 integrins in erythroid and cells in their microenvironment is critical for survival and optimal splenic response to a PHZ-induced stress in adult mice; release of progenitors seen at homeostasis in both b1 and a4 models is cell autonomous with a preferential erythroid progenitor release from BM seen only in b1-deficient but not in a4-deficient mice; in contrast to results with fetal liver cells showing a critical role of a4b1 but not a5b1 integrin for proliferative expansion of erythroid cells, in adults a5b1 expression in erythroid and environmental cells in the spleen assumes a more critical role. Our data expand the current knowledge on the distinct dependency of a4b1 vs a5b1 integrins in basal vs stress erythropoiesis and bridge previously divergent information from in vitro and in vivo experiments.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1462-1462
Author(s):  
Michael Tallack ◽  
Thomas Whitington ◽  
Brooke Gardiner ◽  
Eleanor Wainwright ◽  
Janelle Keys ◽  
...  

Abstract Abstract 1462 Poster Board I-485 Klf1/Eklf regulates a diverse suite of genes to direct erythroid cell differentiation from bi-potent progenitors. To determine the local cis-regulatory contexts and transcription factor networks in which Klf1 works, we performed Klf1 ChIP-seq using the SOLiD deep sequencing platform. We mapped more than 10 million unique 35mer tags and found ∼1500 sites in the genome of primary fetal liver erythroid cells are occupied by endogenous Klf1. Many reside within well characterised erythroid gene promoters (e.g. b-globin) or enhancers (e.g. E2f2 intron 1), but some are >100kb from any known gene. We tested a number of Klf1 bound promoter and intragenic sites for activity in erythroid cell lines and zebrafish. Our data suggests Klf1 directly regulates most aspects of terminal erythroid differentiation including synthesis of the hemoglobin tetramer, construction of a deformable red cell membrane and cytoskeleton, bimodal regulation of proliferation, and co-ordination of anti-apoptosis and enucleation pathways. Additionally, we suggest new mechanisms for Klf1 co-operation with other transcription factors such as those of the gata, ets and myb families based on over-representation and spatial constraints of their binding motifs in the vicinity of Klf1-bound promoters and enhancers. Finally, we have identified a group of ∼100 Klf1-occupied sites in fetal liver which overlap with Klf4-occupied sites in ES cells defined by Klf4 ChIP-seq. These sites are associated with genes controlling the cell cycle and proliferation and are Klf4-dependent in skin, gut and ES cells, suggesting a global paradigm for Klfs as regulators of differentiation in many, if not all, cell types. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document