Selected Expression and Functional Importance of α4a-Tubulin in Platelet Biogenesis

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1360-1360
Author(s):  
Catherine Strassel ◽  
Agnes Hovasse ◽  
Sylvie Moog ◽  
Magda Mageira ◽  
Morgane Batzenschlager ◽  
...  

Abstract Platelets are produced from mature megakaryocytes (MK) following a profound cellular reorganization. This includes the assembly of microtubules (MT) into a unique submenbranous coiled structure, the marginal band (MB). This process is thought to depend on a specific αβ-tubulin isotype repertoire. The MK-restricted-β1-tubulin, the predominant isoform of the MB, is already known to be important for platelet biogenesis but the implication of other isotypes is currently unknown. Our goal was to establish the αβ-tubulin repertoire in platelets and during megakaryopoiesis and to evaluate the implication of selected isotypes in platelet formation. To establish an exhaustive list of the tubulin isotypes, we used combination of RT PCR and proteomic analyses to quantify the expression of each isotype in human platelets and in human MK differentiated in culture from CD34+ hematopoietic progenitors. Information gained on the hierarchical combination of tubulin isoforms in the course of platelet biogenesis has been extended at the functional level to investigate both their role in marginal band formation and platelet functions β6-, β5- and α1c-tubulin transcripts were already present in CD34+ cells and decreased during the final stages of megakaryopoiesis. On the other hand, β1-, α4A- and α8-tubulin transcripts were only observed later during MK differentiation and in platelets. Quantitative LC-SRM mass spectrometry confirmed the predominant expression of β1 and α4A-isotypes in platelets. A functional role of the newly identified α4a-tubulin was supported by the thrombocytopenia and enlarged platelets with a decreased number of MT coils (1-3) comprising less-acetylated tubulin in mice carrying a point mutation in tuba4a. Additionally, a tendency to increased responses to several agonists was observed in these platelets. This study reveals new information on the evolution of the tubulin isotype repertoire in platelet formation pointing to a role of less-widely expressed α-isotypes. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2023-2023
Author(s):  
Michael Keegan Delaney ◽  
Junling Liu ◽  
Yi Zheng ◽  
Xiaoping Du

Abstract Abstract 2023 Platelets activated by physiological agonists such as thrombin and collagen shed procoagulant microparticles (MPs) and externalize the procoagulant phospholipid phosphatidylserine (PS), both of which are critical to hemostasis and play an important role in inflammation. To date, the signaling mechanisms that regulate agonist-induced MP formation and PS exposure in platelets remain unclear. In this study, we demonstrate that the small GTPases Rac1 and RhoA play important roles in regulating the procoagulant activity of platelets. Rac1 null (-/-) mouse platelets or human platelets treated with the Rac1 inhibitor NSC23766 (NSC) displayed a significant defect in MP formation and PS exposure induced by various agonists. Furthermore, Rac1-/- platelets and NSC-treated human platelets displayed a defect in procoagulant activity as demonstrated by a prolonged coagulation time following recalcification of citrated PRP. The stimulatory role of Rac1 in platelet MP formation and PS exposure is distinct from the known function of Rac1 in facilitating platelet granule secretion and secretion-dependent amplification of platelet aggregation, because supplementation of the granule content ADP rescued the defect in platelet aggregation caused by Rac1 inhibition, but failed to rescue the defect in MP formation caused by Rac1 inhibition. In contrast to Rac1, RhoA plays an inhibitory role in regulating platelet procoagulant activity, because treatment of platelets with the Rho inhibitor C3-toxin (C3) significantly enhanced agonist-induced MP formation, PS exposure, and procoagulant activity. The enhancing effect of C3 on platelet procoagulant activity is not caused by an overall enhancement of platelet activation because C3 significantly inhibited platelet secretion and aggregation. Thus, our data demonstrates that while Rac1 and RhoA both play important stimulatory roles in platelet granule secretion and aggregation, they play opposing roles in MP formation and PS exposure in platelets. Rac1 is important for stimulating platelet MP formation, PS exposure, and procoagulant activity, which is antagonized by RhoA. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 22-22
Author(s):  
Katarzyna Bialkowska ◽  
Eugene Podrez ◽  
Tatiana V. Byzova ◽  
Edward F. Plow

Abstract The contributions of integrins to platelet responses depend upon the dynamic regulation of their activation status, which in turn depends on engagement of binding partners by their cytoplasmic tails. It is well-established that not only talin but also kindlin family members are essential for integrin activation, and both must present for optimal integrin function. Recent studies in humans have specifically emphasized the vital role of kindlin-3 in integrin functions in hematopoietic cells, including platelets, where kindlin-3 deficiency can lead to episodic bleeding, frequent infections and osteopetrosis, consequences of an inability to activate β1, β2 and β3 integrins. Despite this evidence, little is known about kindlin-3 structure-function relationship. Here, we used human platelets and human erythroleukemic HEL cell line that expresses integrin αIIbβ3 to investigate whether posttranslational modification(s) of kindlin-3 occurs and can influence its integrin activity. Non-stimulated HEL cells are suspension cells, and they do not adhere to fibrinogen or bind soluble fibrinogen and PAC-1 antibody (specific for activated αIIbβ3) readily. Thrombopoietin or PMA stimulation activated αIIbβ3 such that the cells adhered and spread on fibrinogen and increased their binding of PAC-1 and soluble fibrinogen. β3 integrin and kindlin-3 colocalized in focal adhesions in the adherent cells, and there was enhanced β3 integrin-kindlin-3 association as detected by coimmunoprecipitation. Kindlin-3 knockdown impaired agonist-stimulated adhesion and spreading on fibrinogen. Since, as we have shown previously, β3 integrin phosphorylation regulates kindlin and integrin interaction, we sought to determine whether kindlin-3 is also phosphorylated. Human platelets were stimulated with thrombin and HEL cells with PMA, and kindlin-3 was immunoprecipitated from lysates of control and stimulated cells. A kindlin-3 peptide showing significant increase in phosphorylation upon agonist stimulation was identified in both platelets and HEL cells by mass spectrometry. T482 or S484 were identified as phosphorylation sites in sequence that resides in the kindlin-3 variable region, which is not present either in kindlin-1 or kindlin-2 but is conserved across all species in which kindlin-3 has been sequenced. When expressed in HEL cells, TS/AA kindlin-3 mutant displayed decreased soluble fibrinogen binding and cell spreading on immobilized fibrinogen when compared to wild-type kindlin-3. Membrane-permeable, poly-arginine tagged kindlin-3 peptide containing the candidate phosphorylation sites kindlin-3 was introduced into HEL cells and platelets. HEL cell adhesion and spreading was blunted by the kindlin-3 peptide when compared to a scramble poly-arginine control peptide. Moreover, thrombin-induced platelet aggregation was inhibited by kindlin-3 peptide but not by the scramble peptide. Thus, our data emphasizes a role of previously unknown, agonist-induced kindlin-3 phosphorylation, in integrin αIIbβ3 activation in HEL cells and platelets and provides a basis for functional differences between kindlin-3 and its other two paralogs, kindlin-1 and kindlin-2. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2014-2014
Author(s):  
Claudia Lorena Buitrago ◽  
Satya P. Kunapuli ◽  
Archana Sanjay

Abstract Abstract 2014 Platelet activation by outside-in signaling is initiated by the binding of fibrinogen to alphaIIbbeta3, an integrin only expressed in platelets and megakaryocytes. Signals transduced by alphaIIbbeta3 regulate actin cytoskeleton resulting in filopodia and lamellipodia formation, cell spreading and retraction. c-Cbl protein is abundantly expressed in platelets and functions as E3 ubiquitin ligase and scaffolding protein to mediate protein-protein interactions. Importantly, c-Cbl tyrosine 731 has been shown to interact with p85 subunit of phosphotidylinositol 3-kinase (PI3K) modulating the actin cytoskeleton. Although previous reports showed c-Cbl activation downstream of alphaIIbbeta3, the mechanisms and implications of this activation or the downstream targets remain to be elucidated. We have studied the role of c-Cbl in platelet outside-in signaling: Using human platelets we have demonstrated that c-Cbl Y700, Y731 and Y774 residues undergoes tyrosine phosphorylation upon platelet adhesion to immobilized fibrinogen. These phosphorylation events are completely inhibited in the presence of the pan Src Family Kinases (SFKs) inhibitor (PP2) suggesting that c-Cbl is phosphorylated downstream of SFKs. Spleen tyrosine kinase (Syk) is also involved in this signaling pathway since its inhibition significantly reduce c-Cbl phosphorylation at residues Y774 and Y700; interestingly, tyrosine 731 phosphorylation, which allows the interaction with the p85-subunit of PI3K, is not affected by Syk inhibition. The physiological role of c-Cbl in platelet outside-in signaling was studied using c-Cbl knock-out mice. We found that in contrast to WT platelets, c-Cbl KO platelets had a significantly reduced spreading over a fibrinogen-coated surface. Furthermore, clot retraction analysis demonstrated that c-Cbl KO platelets retraction time was delayed when compared to WT platelets, suggesting a retraction defect. To further elucidate the physiological role of c-Cbl-PI3K interaction we used a knock-in mouse in which the c-Cbl residue Y 731 was substituted with phenylalanine (Y731F) thereby abolishing the PI3K binding site on c-Cbl. Importantly, platelets from Y731F mice showed spreading and clot retraction defect that were comparable with the c-Cbl KO. These result indicates that in large part, the role of c-Cbl in platelets outside-in signaling is determined by its interaction with PI3K. In conclusion, we have demonstrated that c-Cbl plays an important role in platelet outside-in signaling, and its interaction with PI3K through tyrosine 731 is of pivotal importance in platelet spreading and retraction. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3000-3000
Author(s):  
Olga Panes ◽  
Valeria Matus ◽  
Claudia G. Sáaez ◽  
Jaime Pereira ◽  
Diego Mezzano

Abstract Abstract 3000 Poster Board II-977 Human platelets synthesize and store functionally silent tissue factor (TF) which expresses procoagulant activity (PCA) after platelet activation. Fast activation of TF was elicited by VWF-Ristocetin (VWF-R) through GPIbαa activation and Src-Lyn transduction pathway (Blood, Nov 2008; 112:113). Given that GPVI, along with GPIb and TF have been found in “lipid rafts”, and the activated form of GPVI signals through Fyn, another member of the Src family, we tested if GPVI was involved in TF-initiated PCA. We also studied the time-course and pathway specificity of TF activation and the role of platelet FVII in PCA. Weak TF immunofluorescence and co-localization with GPIba were observed in non stimulated washed platelets. A mild increase of TF fluorescence was detected 2 min after TRAP activation, which augmented when the stimulus was VWF-R. Furthermore, striking enhancement of TF fluorescence occurred 2 min after depositing platelets over a VWF-coated surface, but not over fibrinogen or albumin. Platelets adherent to VWF matrix showed GPIb clustering and loss of co-localization with TF. Externalization of TF was confirmed by immunoprecipitation (Ip) of biotinylated membranes before and after platelet activation. Concomitantly, TF-dependent FXa generation increased 5-10-fold shortly after VWF stimulus. Washed platelets stimulated with VWF-R agglutinated normally when stirred in an aggregometer, and the fraction of platelets exposing anionic phospholipids (annexin V binding) was similar to parallel samples stimulated with TRAP. However, VWF-R induced null 14C-serotonin secretion and P-selectin exposure (flow cytometry) in washed platelets. In contrast, TRAP, collagen, ADP and convulxin induced full platelet aggregation, 14C-serotonin and P-selectin secretion at 2-5 min, but with no increase in FXa generation. Platelet PCA was inhibited by antibodies against TF, GPIba, FVIIa, as well as by SU6656 and PP2 (Src pathway inhibitors), but not by Gö6850 (a PKC inhibitor) or exogenous TFPI. p85, a subunit of PI-3K constitutively associated with GPIb complex, becomes strongly associated with TF after stimulation with VWF-R, though only weakly after TRAP activation, confirming the coordinate activation of GPIb and TF. FVII and FX were revealed in platelet membrane fractions by immunoblotting and both co-precipitate with TF in non-stimulated platelets. Two min after activation with VWF-R striking co-precipitations of TF with FVII and FX light chains were evidenced, denoting activation of platelet FVII and FX. When exogenous FX was added to the assay, the amount of FXa generated after 1 and 2 min stimulation was similar whether or not exogenous FVIIa was added. Platelets from four non-related patients with bleeding related to hereditary defect of GPVI had null aggregation and secretion with convulxin and collagen, less than 7% labeling of GPVI by flow cytometry and an immunoreactive membrane GPVI of Mr≈40kDa (native GPVI Mr=62kDa). All of them had normal agglutination with VWF-R and normal FXa generation. In summary, GPIb activation by VWF constitutes a unique and fast inducer of platelet TF-dependent PCA. This process requires anionic phospholipid exposure, but is independent of platelet GPIIb/IIIa and GPVI function. Platelet FVII can initiate FXa generation without need of plasma FVII. The associations of platelet FVII and FX with TF on membrane fractions, together with the large amount of FV in platelets, indicate that human platelets provide not just TF and a PCA phospholipid platform, but also all the components of the prothrombinase complex to trigger the clotting process. Taken together, our results underline the central role of platelets in the whole hemostatic process, unifying primary and secondary hemostasis and circumscribing thrombin generation and fibrin deposition where platelet plug is being formed. Platelet PCA should become a pharmacological target for preventing or managing bleeding and thrombotic disorders. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. SCI-19-SCI-19
Author(s):  
David Rawlings

Abstract Abstract SCI-19 Over the last four decades, the genetic defects leading to more than 140 distinct inherited immune disorders have been discovered. A subset of these diseases primarily impact B cell development, homeostasis, and/or activation. This talk will provide an overview of these B cell disorders. It will highlight new information regarding human immune function that has been gained from studying these disorders including: the role of key receptors or signaling effectors in immune development or activation, how such changes may impact pathogen specific versus autoimmune responses, and how targeting these pathways may provide a means to modulate other more common human immune diseases. Finally, we will provide a brief overview of efforts to correct one of these disorders in patients using genetic therapies. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 95-95 ◽  
Author(s):  
Diane Krause ◽  
Stephanie Halene ◽  
Carmen Jane Booth ◽  
Huiyan Jin ◽  
Siying Zou ◽  
...  

Abstract Epithelial (E-) cadherin is an adhesion molecule that mediates cell-cell interactions, and is important in pluripotent stem cell reprogramming. We are investigating the role of E-cadherin in megakaryocyte differentiation and platelet function, and propose that E-cadherin mediates interactions that facilitate the essential roles of platelets. We have evidence that mature megakaryocytes and platelets express E-cadherin, and therefore generated a megakaryocyte-specific E-cadherin knockout mouse using the PF4-Cre system. E-cadherin deleted mice are viable and fertile. Despite having normal platelet counts and mean platelet volume, platelet function is abnormal. E-cadherin deletion in platelets significantly increases bleeding time in adult mice, with wild type (Ecadw/w) bleeding times of 225±52 secs, and homozygous deletion (Ecadf/f) times of 880±134 secs (p=0.005). In vivo platelet depletion using systemic administration of anti-CD42b antibody in the Ecadf/f mice causes death, likely due to hemorrhage and failure of hemostasis, which is not observed in Ecadw/w with similar levels of platelet depletion, suggesting a platelet function defect that becomes more evident under stress. We performed immunofluorescence to probe platelet structure as a potential explanation for the phenotypes, and observed disrupted b-tubulin architecture in the E-cadherin null platelets. Also, static platelet adhesion assays revealed that E-cadherin deficient platelets have impaired adhesion on fibrinogen, relative to a BSA substrate (p=0.0005). We have extended our studies to the human system, and initial studies using an E-cadherin blocking antibody in human platelets show impairment of aggregation in response to ADP, epinephrine, and thrombin. Taken together, the results demonstrate that E-cadherin contributes to the delicate balance between bleeding, hemostasis, and thrombosis. Future studies will focus on identifying how E-cadherin regulates hemostasis, with an emphasis on the interactions mediated by E-cadherin, whether between platelets, or with other cells in the blood. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 2 (1) ◽  
pp. e201900309 ◽  
Author(s):  
Catherine Strassel ◽  
Maria M Magiera ◽  
Arnaud Dupuis ◽  
Morgane Batzenschlager ◽  
Agnès Hovasse ◽  
...  

During platelet biogenesis, microtubules (MTs) are arranged into submembranous structures (the marginal band) that encircle the cell in a single plane. This unique MT array has no equivalent in any other mammalian cell, and the mechanisms responsible for this particular mode of assembly are not fully understood. One possibility is that platelet MTs are composed of a particular set of tubulin isotypes that carry specific posttranslational modifications. Although β1-tubulin is known to be essential, no equivalent roles of α-tubulin isotypes in platelet formation or function have so far been reported. Here, we identify α4A-tubulin as a predominant α-tubulin isotype in platelets. Similar to β1-tubulin, α4A-tubulin expression is up-regulated during the late stages of megakaryocyte differentiation. Missense mutations in the α4A-tubulin gene cause macrothrombocytopenia in mice and humans. Defects in α4A-tubulin lead to changes in tubulin tyrosination status of the platelet tubulin pool. Ultrastructural defects include reduced numbers and misarranged MT coils in the platelet marginal band. We further observed defects in megakaryocyte maturation and proplatelet formation inTuba4a-mutant mice. We have, thus, discovered an α-tubulin isotype with specific and essential roles in platelet biogenesis.


1979 ◽  
Vol 42 (04) ◽  
pp. 1193-1206 ◽  
Author(s):  
Barbara Nunn

SummaryThe hypothesis that platelet ADP is responsible for collagen-induced aggregation has been re-examined. It was found that the concentration of ADP obtaining in human PRP at the onset of aggregation was not sufficient to account for that aggregation. Furthermore, the time-course of collagen-induced release in human PRP was the same as that in sheep PRP where ADP does not cause release. These findings are not consistent with claims that ADP alone perpetuates a collagen-initiated release-aggregation-release sequence. The effects of high doses of collagen, which released 4-5 μM ADP, were not inhibited by 500 pM adenosine, a concentration that greatly reduced the effect of 300 μM ADP. Collagen caused aggregation in ADP-refractory PRP and in platelet suspensions unresponsive to 1 mM ADP. Thus human platelets can aggregate in response to collagen under circumstances in which they cannot respond to ADP. Apyrase inhibited aggregation and ATP release in platelet suspensions but not in human PRP. Evidence is presented that the means currently used to examine the role of ADP in aggregation require investigation.


2020 ◽  
Vol 26 (2) ◽  
pp. 145-149
Author(s):  
Aurelia Teodora Drăghici

SummaryTheme conflicts of interest is one of the major reasons for concern local government, regional and central administrative and criminal legal implications aiming to uphold the integrity and decisions objectively. Also, most obviously, conflicts of interest occur at the national level where political stakes are usually highest, one of the determining factors of this segment being the changing role of the state itself, which creates opportunities for individual gain through its transformations.


Author(s):  
Victor Shpak

This article is devoted to analysis of the modern problems of book publishing in the context of national information space. Development of the Ukrainian state is impossible without development of national book publishing, which is a part of its information space. In Ukraine, as one of the post-Soviet states, the formation of new information and communication system is based on its own information tradition, mentality and features of spiritual culture of the Ukrainians. It plays an important role in shaping culture, spirituality, comprehensive vision and consciousness of the nation. They were and they are a source of knowledge and the most effective way of its transfer. The transience of processes occurring the era of information society, radical socio-economic reforms, sectoral technological revolution requires the continuous scientific researches and analysis, identifying the trends in publishing industry as one of the most important factors in the state’s democratic progress. The author summarizes the development of book publishing of Ukraine and shows its role and place in the modern information society. The study of the modern book publishing is impossible without digression into the past, without finding out the roots of studying of the analysis object. The specific problems of the book industry are identified. It is concluded that in the modern Ukraine the publishing business has intensified, although the positive changes are taking place very slowly: the appropriate economic conditions for development of the publishing industry have not been created, the equipment are outdated; editorial, publishing and printing equipment of domestic manufacture are nonavailable; introduction of advanced technology are low; purchasing ability of the population is low; the sales network of printed products has been destroyed and so on. The businesses are becoming increasingly uneconomical. We propose some measures to improve this situation, strengthening the role of industry in the national information space. The key to improve the situation may be systematic and persistent efforts of the Ukrainian government to support the industry.The reason is that a comprehensive study requires from the performers not only historical knowledge, but also economic, managerial, psychological, political efforts and so on. The most important thing that the society and the state should need is the component of doctrine of information security in the context of the national security


Sign in / Sign up

Export Citation Format

Share Document