scholarly journals IMGN632: A CD123-Targeting Antibody-Drug Conjugate (ADC) with a Novel DNA-Alkylating Payload, Is Highly Active and Prolongs Survival in Acute Myeloid Leukemia (AML) Xenograft Models

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2832-2832 ◽  
Author(s):  
Sharlene Adams ◽  
Alan Wilhelm ◽  
Lauren Harvey ◽  
Chen Bai ◽  
Nicholas Yoder ◽  
...  

Abstract ADCs targeting cytotoxic payloads to cancer cells using antibodies that recognize tumor-associated antigens are an expanding therapeutic area. CD123, the IL-3 receptor alpha-subunit, is an attractive cancer target implicated in AML cell survival and proliferation. While CD123 is expressed on AML blasts and is associated with aggressive disease, it is also differentially expressed on AML stem cells relative to normal hematopoietic cells. We report the pre-clinical evaluation of IMGN632, an ADC comprising a CD123-binding antibody and a DNA-alkylating, indolino-benzodiazepine payload (termed an IGN), in disseminated and subcutaneous (SC) AML xenograft models which possess poor prognosis markers or demonstrate drug resistance. Novel anti-CD123 antibodies were generated in mice by immunization with a human CD123-expressing cell line. Following antibody selection and humanization in the IgG1 format, IMGN632 was produced by conjugating a novel DNA-alkylating payload (DGN549), via a cleavable peptide linker, to the anti-CD123 antibody at engineered cysteine residues, resulting in an ADC with ~2 DGN549 molecules per antibody. The in vitro cytotoxicity of IMGN632 and of a non-targeted control ADC (the DGN549 payload conjugated to an antibody against Kunitz soybean trypsin inhibitor) on human cancer cell lines were evaluated by determining cell viability using the WST-8 reagent after continuous ADC exposure for up to 7 days. The IC50 was determined for each ADC and the specificity ratio (IC50 of control ADC: IC50 of IMGN632) was calculated for each cell line. The antitumor activity of IMGN632 and the control ADC were assessed in vivo in immuno-deficient mice bearing Molm-13, Kasumi-3-Luc or MV4-11 disseminated or EOL-1 sc human AML xenografts. Subcutaneous tumor volumes were measured twice weekly. Mice bearing Kasumi-3-Luc were live-animal imaged approximately twice weekly to quantify bioluminescent tumor burden. The maximum tolerated dose (MTD) of IMGN632 was determined by administering single intravenous (IV) injections of IMGN632 to non-tumor bearing female CD-1 mice. In all studies, assessment was terminated for weight loss > 20% or for clinical signs or, in the EOL-1 model, when SC tumor volume reached approximately 1000 mm3. IMGN632 was highly potent in vitro towards CD123-expressing human AML cell lines with poor prognostic markers (EOL-1, Molm-13 (FLT3-ITD), MV4-11 (FLT3-ITD) and Kasumi-3 (p53, MDR1+)), with IC50 values of < 3 pMol and high specificity ratios ranging from 100 to 2000. In contrast, IMGN632 had IC50 values of > 8000 pMol and a specificity ratio of 1 in CD123-negative human cell lines (Namalwa, K562). These data confirm the CD123-directed activity of IMGN632 in vitro. IMGN632 displayed antigen-specific antitumor activity in immuno-deficient mice bearing disseminated xenografts, resulting in prolonged survival, with an increase in life span from 50% to > 262%. In these models, the control ADC was inactive, with no increase in life span. In the Kasumi-3-Luc disseminated model, treatment with highly active doses of 240 or 800 mcg/kg IMGN632 (by antibody) resulted in decreased bioluminescent tumor burden. In the other disseminated models, IMGN632 was highly active at doses of 80 or 240 mcg/kg in MV4-11 and at doses as low as 8 mcg/kg in Molm-13, which, when taken together with the MTD of 8000 mcg/kg, generated a therapeutic index of 1000. In the azacitidine- and cytarabine-resistant EOL-1 SC model, IMGN632 was highly active at a dose of 240 mcg/kg, resulting in 8/8 long-term complete responses, while unconjugated DGN549, anti-CD123 antibody and control ADC were inactive at IMGN632-matched doses. In conclusion, IMGN632 exhibits potent, CD123-specific in vitro activity against AML cell lines, including those with markers of poor prognosis such as MDR1, p53 and FLT3-ITD. IMGN632 is highly active in vivo against Molm-13, Kasumi-3 and MV4-11 disseminated xenografts, resulting in prolonged survival and reduced tumor burden. In addition, IMGN632 is highly active against EOL-1 xenografts, which appear to be resistant to azacitidine and cytarabine in vivo, but highly sensitive to the ADC, resulting in tumor regression and prolonged tumor-free survival. These findings support advancing IMGN632 into clinical trials. Disclosures Adams: ImmunoGen, Inc.: Employment. Wilhelm:ImmunoGen, Inc.: Employment. Harvey:ImmunoGen, Inc.: Employment. Bai:ImmunoGen, Inc.: Employment. Yoder:ImmunoGen, Inc.: Employment. Kovtun:ImmunoGen, Inc.: Employment. Chittenden:ImmunoGen, Inc.: Employment. Pinkas:ImmunoGen, Inc.: Employment.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3302-3302
Author(s):  
Timothy Pardee ◽  
Evan Gomes ◽  
Jamie Jennings-Gee ◽  
David L. Caudell ◽  
William Gmeiner

Abstract Abstract 3302 Acute Myeloid Leukemia (AML) is an aggressive myeloid malignancy that leads to marrow failure and death. This disease affects approximately 12,000 people per year in the United States, causing 9,000 deaths. Despite decades of research, therapy remains essentially unchanged and outcomes are poor. In patients over the age of 60 less then 10% of patients survive 5 years from diagnosis. There is a desperate need for the identification of new active agents with favorable toxicity profiles. The novel polymeric fluoropyrimidine (FP) FdUMP[10] is an oligodeoxynucleotide pro-drug of the thymidylate synthase (TS)-inhibitory FP metabolite 5-fluoro-2'-deoxyuridine-5`-O-monophosphate (FdUMP). The observation that this compound was highly active against several leukemia lines in the NCI 60 cell line screen prompted us to evaluate its activity in several preclinical models of AML. In vitro, FdUMP[10] exhibited remarkable activity against 3 human acute leukemia cell lines, HL60, Jurkat and THP-1, with IC50 values of 3.378 nM (95% CI 2.984 to 3.825), 5.438 nM (4.609 to 6.417) and 4.093 nM (3.413 to 4.907) respectively. We next tested its efficacy against a more genetically defined murine model of AML driven by expression of MLL-ENL. FdUMP[10] exhibited even greater activity against all murine lines tested. The IC50 values of FdUMP[10] against two MLL-ENL driven murine AML cell lines were 214 pM (95%CI 178.9 to 255.9) and 292.3 pM (251.8 to 339.4). The IC50 values observed for FdUMP[10] for all the murine lines tested were lower than both Ara-C (30-40 nM) and doxorubicin (2-4 nM). We then determined the cytotoxic mechanism for FdUMP[10] in vitro. Upon treatment with FdUMP[10] both the human and murine cell lines undergo extensive apoptosis as indicated by Annexin V and propidium iodide staining. Treated cells developed γH2AX foci, rapid and complete TS inhibition and display trapped Topoisomerase I (Topo I) cleavage complexes. FdUMP[10]-mediated induction of apoptosis was p53 independent as murine AML cells that had p53 knocked down by RNAi demonstrated resistance to both Ara-C and doxorubicin, but not to FdUMP[10]. We next tested the efficacy of FdUMP[10] in vivo. The MLL-ENL driven murine AML model results in blasts that can be transplanted into sublethally irradiated, immunocompetent, syngeneic recipients. The recipients develop a fatal and therapy-resistant AML. Lines were generated that expressed a luciferase reporter. Animals were imaged 6–7 days after injection of the leukemias to ensure engraftment and then began treatment with either the combination of Ara-C plus doxorubicin, single-agent FdUMP[10], or observation. Studies were performed using 2 doses of FdUMP[10] at 150 or 300 mg/kg injected on days 1 and 3 and compared to animals treated with 100 mg/kg Ara-C and 3mg/kg doxorubicin injected on days 1 through 5. Both treatments resulted in a statistically significant survival advantage over observation. A preliminary toxicology study compared FdUMP[10], 150 mg/kg daily, to 5-fluorouracil (5 FU), 150 mg/kg daily, or the combination of Ara-C at 100 mg/kg plus doxorubicin at 3 mg/kg daily. All groups were treated for 3, 4 or 5 days. On day 6 animals were sacrificed and organs harvested, sectioned, and stained. Slides were then reviewed by a veterinary pathologist. Tissues most affected were the small intestine, colon, and the bone marrow. The 5FU-treated animals had severe villous blunting and fusion with crypt necrosis in both large and small intestine. In contrast, FdUMP[10]-treated animals had only mild crypt epithelial apoptosis with mitoses. The 5 FU and Ara-C plus doxorubicin groups had a severe pan-cytopenia in the marrow compared to FdUMP[10] treated animals that showed only minimal to mild apoptosis. These data support the assertion that FdUMP[10] has lower toxicity then either Ara-C plus doxorubicin or identically dosed 5 FU. In summary FdUMP[10] exhibited remarkable activity against AML cells in vitro and in vivo. Additionally, FdUMP[10] had decreased toxicity compared to treatment with either single agent 5 FU or combination treatment with Ara-C plus doxorubicin. Disclosures: Gmeiner: Salzburg Therapeutics: Equity Ownership.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2321-2321 ◽  
Author(s):  
Kathleen R Whiteman ◽  
Paul Noordhuis ◽  
Russell Walker ◽  
Krystal Watkins ◽  
Yelena Kovtun ◽  
...  

Abstract IMGN779 is a CD33-targeted ADC utilizing DGN462, a novel DNA-alkylating agent consisting of an indolino-benzodiazepine dimer containing a mono-imine moiety. CD33 is expressed on the surface of about 90% of AML cases, with elevated levels of CD33 found in cases having molecular markers associated with poor prognosis, including mutations in FMS-like tyrosine kinase 3 (FLT3). The internal tandem duplication mutation (FLT3-ITD) is the most common FLT3 mutation, present in about 20-25% of AML cases. Patients with FLT3-ITD AML have a worse prognosis than those with wild-type (WT) FLT3, with an increased rate of relapse and a shorter duration of response to induction chemotherapy. IMGN779 was found to demonstrate targeted activity against AML cell lines in vitro, with IC50 values ranging from 2-3,000 pM. The MV4-11 cell line, which has a FLT3-ITD mutation, was the most sensitive to IMGN779 of the cell lines tested, with an IC50 of 2 pM. We evaluated the in vivo activity of IMGN779 against MV4-11 xenografts in SCID mice; IMGN779 was highly active (T/C = 1 %) at a single dose of 0.6 mg/kg (conjugate dose, 10 µg/kg DGN462 dose), resulting in complete tumor regressions (CR) in 3/6 animals and partial regressions (PR) in 6/6 animals. A DGN462-ADC to a non-relevant target was inactive (T/C = 95%) at the same dose, demonstrating that the activity of IMGN779 was due to its CD33 targeting. IMGN779 has previously been shown to be highly active against AML xenograft models without FLT3-ITD mutations, at minimally efficacious doses of 0.6 mg/kg (10 µg/kg DGN462), demonstrating that the presence of FLT3-ITD does not confer resistance to IMGN779 treatment. IMGN779 was also highly active in vitro against primary patient AML cells isolated from peripheral blood or bone marrow samples. Patient AML cells with FLT3-ITD were more sensitive to IMGN779 compared with FLT3 WT AML samples. IC50 values in FLT3-ITD samples ranged from 10 to 300 pM. CD33 expression was generally greater on FLT3-ITD leukemic blast cells than on FLT3 WT blasts, which likely contributed to their increased sensitivity to IMGN779. In long term cultures, IMGN779 showed a dose dependent decrease in leukemic stem cell (LSC) colony formation using an AML patient sample with both FLT3-ITD and NPM1 mutations, which are an even worse prognostic marker than FLT3-ITD alone. In contrast, colony formation increased in normal bone marrow, indicating that normal hematopoietic stem cells (HSCs) were spared. The differential expression of CD33 on LSC compared to HSCs makes CD33 an attractive target for treatment of AML, with the potential to eliminate LSCs and, thus, minimal residual disease in FLT3-ITD AML. The potent in vitro activity of IMGN779 against FLT3-ITD AML cell lines and primary patient FLT3-ITD AML progenitor cells and LSCs and its high level of CD33-targeted in vivo activity in a FLT3-ITD AML xenograft model support the advancement of IMGN779 as a potential treatment for AML, including FLT3-ITD AML. Disclosures Whiteman: ImmunoGen, Inc.: Employment. Noordhuis:ImmunoGen, Inc.: Research Funding. Walker:ImmunoGen, Inc.: Employment. Watkins:ImmunoGen, Inc.: Employment. Kovtun:ImmunoGen, Inc.: Employment. Harvey:ImmunoGen, Inc.: Employment. Wilhelm:ImmunoGen, Inc.: Employment. Johnson:ImmunoGen, Inc.: Employment. Schuurhuis:ImmunoGen, Inc.: Research Funding. Ossenkoppele:ImmunoGen, Inc.: Research Funding. Lutz:ImmunoGen, Inc.: Employment, Equity Ownership.


2019 ◽  
Vol 16 (6) ◽  
pp. 462-467
Author(s):  
Songtao Li ◽  
Hongling Zhao ◽  
Zhifeng Yin ◽  
Shuhua Deng ◽  
Yang Gao ◽  
...  

A series of new phenanthrene-based tylophorine derivatives (PBTs) were synthesized in good yield and their structures were characterized by 1H-NMR spectroscopy and ESI MS. In vitro antitumor activity of these compounds against five human carcinoma cell lines, including HCT116 (colorectal), BGC-823 (gastric), HepG-2 (hepatic), Hela (cervical) and H460 (lung) cells, was evaluated by MTT assay. Among these PBTs, compound 6b showed the highest antitumor activities against HCT116 and HepG-2 cell lines with IC50 values of 6.1 and 6.4 μM, respectively, which were comparable to that of adriamycin hydrochloride. The structure-activity relationship of these compounds was also discussed based on the results of their antitumor activity.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1838
Author(s):  
Naglaa M. Ahmed ◽  
Mahmoud M. Youns ◽  
Moustafa K. Soltan ◽  
Ahmed M. Said

Scaffolds hybridization is a well-known drug design strategy for antitumor agents. Herein, series of novel indolyl-pyrimidine hybrids were synthesized and evaluated in vitro and in vivo for their antitumor activity. The in vitro antiproliferative activity of all compounds was obtained against MCF-7, HepG2, and HCT-116 cancer cell lines, as well as against WI38 normal cells using the resazurin assay. Compounds 1–4 showed broad spectrum cytotoxic activity against all these cancer cell lines compared to normal cells. Compound 4g showed potent antiproliferative activity against these cell lines (IC50 = 5.1, 5.02, and 6.6 μM, respectively) comparable to the standard treatment (5-FU and erlotinib). In addition, the most promising group of compounds was further evaluated for their in vivo antitumor efficacy against EAC tumor bearing mice. Notably, compound 4g showed the most potent in vivo antitumor activity. The most active compounds were evaluated for their EGFR inhibitory (range 53–79 %) activity. Compound 4g was found to be the most active compound against EGFR (IC50 = 0.25 µM) showing equipotency as the reference treatment (erlotinib). Molecular modeling study was performed on compound 4g revealed a proper binding of this compound inside the EGFR active site comparable to erlotinib. The data suggest that compound 4g could be used as a potential anticancer agent.


2020 ◽  
Author(s):  
zhichao xue ◽  
Vivian Wai Yan Lui ◽  
Yongshu Li ◽  
Jia Lin ◽  
Chanping You ◽  
...  

Abstract Background: Recent genomic analyses revealed that druggable molecule targets were detectable in approximately 6% of patients with nasopharyngeal carcinoma (NPC). However, a dependency on dysregulated CDK4/6–cyclinD1 pathway signaling is an essential event in the pathogenesis of NPC. In this study, we aimed to evaluate the therapeutic efficacy of a specific CDK4/6 inhibitor, palbociclib, and its compatibility with other chemotherapeutic drugs for the treatment of NPC by using newly established xenograft models and cell lines derived from primary, recurrent, and metastatic NPC. Methods: We evaluated the efficacies of palbociclib monotherapy and concurrent treatment with palbociclib and cisplatin or suberanilohydroxamic acid (SAHA) in NPC cell lines and xenograft models. RNA sequencing was then used to profile the drug response–related pathways. Palbociclib-resistant NPC cell lines were established to determine the potential use of cisplatin as a second-line treatment after the development of palbociclib resistance. We further examined the efficacy of palbociclib treatment against cisplatin-resistant NPC cells. Results: In NPC cells, palbociclib monotherapy was confirmed to induce cell cycle arrest in the G1 phase in vitro . Palbociclib monotherapy also had significant inhibitory effects in all six tested NPC tumor models in vivo , as indicated by substantial reductions in the total tumor volumes and in Ki-67 proliferation marker expression. In NPC cells, concurrent palbociclib treatment mitigated the cytotoxic effect of cisplatin in vitro . Notably, concurrent treatment with palbociclib and SAHA synergistically promoted NPC cell death both in vitro and in vivo . This combination also further inhibited tumor growth by inducing autophagy-associated cell death. NPC cell lines with induced palbociclib or cisplatin resistance remained sensitive to treatment with cisplatin or palbociclib, respectively. Conclusions: Our study findings provide essential support for the use of palbociclib as an alternative therapy for NPC and increase awareness of the effective timing of palbociclib administration with other chemotherapeutic drugs. Our results provide a foundation for the design of first-in-human clinical trials of palbociclib regimens in patients with NPC.


2021 ◽  
Author(s):  
Andjela Franich ◽  
◽  
Milica Dimitrijević Stojanović ◽  
Snežana Rajković ◽  
Marina Jovanović ◽  
...  

Four Pt(II) complexes of the general formula [Pt(L)(5,6-epoxy-1,10-phen)], where L is anion of malonic (mal, Pt1), 2-methylmalonic (Me-mal, Pt2), 2,2-dimethylmalonic (Me2-mal, Pt3) or 1,1- cyclobutanedicarboxylic (CBDCA, Pt4) acid while 5,6-epoxy-1,10-phen is bidentately coordinated 5,6-epoxy-5,6-dihydro-1,10-phenanthroline were synthesized and characterized by elemental microanalysis, IR, UV-Vis and NMR (1H and 13C) spectroscopic techniques. In vitro anticancer activity of novel platinum(II) complexes have been investigated on human and murine cancer cell lines, as well as normal murine cell line by MTT assay. The obtained results indicate that studied platinum(II) complexes exhibited strong cytotoxic activity against murine breast carcinoma cells (4T1), human (HCT116) and murine (CT26) colorectal carcinoma cells. Complex Pt3 display stronger selectivity toward carcinoma cells in comparison to other tested platinum(II) complexes exhibiting beneficial antitumor activity mainly via the induction of apoptosis, as well as inhibition of cell proliferation and migration. Further study showed that Pt3 complex also carry significant in vivo antitumor activity in orthotopical 4T1 tumor model without detected liver, kidney, lung, and heart toxicity. All results imply that these novel platinum(II) complexes have a good anti-tumor effect on breast and colorectal cancer in vivo and in vitro and the affinity to become possible candidates for treatment in anticancer therapy.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1592
Author(s):  
Surendra R. Punganuru ◽  
Viswanath Arutla ◽  
Wei Zhao ◽  
Mehrdad Rajaei ◽  
Hemantkumar Deokar ◽  
...  

There is a desperate need for novel and efficacious chemotherapeutic strategies for human brain cancers. There are abundant molecular alterations along the p53 and MDM2 pathways in human glioma, which play critical roles in drug resistance. The present study was designed to evaluate the in vitro and in vivo antitumor activity of a novel brain-penetrating small molecule MDM2 degrader, termed SP-141. In a panel of nine human glioblastoma and medulloblastoma cell lines, SP-141, as a single agent, potently killed the brain tumor-derived cell lines with IC50 values ranging from 35.8 to 688.8 nM. Treatment with SP-141 resulted in diminished MDM2 and increased p53 and p21cip1 levels, G2/M cell cycle arrest, and marked apoptosis. In intracranial xenograft models of U87MG glioblastoma (wt p53) and DAOY medulloblastoma (mutant p53) expressing luciferase, treatment with SP-141 caused a significant 4- to 9-fold decrease in tumor growth in the absence of discernible toxicity. Further, combination treatment with a low dose of SP-141 (IC20) and temozolomide, a standard anti-glioma drug, led to synergistic cell killing (1.3- to 31-fold) in glioma cell lines, suggesting a novel means for overcoming temozolomide resistance. Considering that SP-141 can be taken up by the brain without the need for any special delivery, our results suggest that SP-141 should be further explored for the treatment of tumors of the central nervous system, regardless of the p53 status of the tumor.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi192-vi192
Author(s):  
Ajay Sharma ◽  
Yanlai Lai ◽  
Bridget Kennis ◽  
Sreepradha Sridharan ◽  
Tara Dobson ◽  
...  

Abstract Diffuse Intrinsic Pontine Glioma (DIPG) is an incurable pediatric brain tumor that occur in the pons and brainstem and have a peak onset of age between 6–9 years of age. Radiation is currently used as standard of care. Chemotherapy has shown no improvements in survival. Here, we report our study of ONC201, a first-in-class anticancer small molecule developed by Oncoceutics, Inc., against DIPG cells in vitro and in mouse orthotopic models. ONC201 was discovered in a screen as a p53-independent inducer of the pro-apoptotic cytokine TRAIL. It is known to directly and selectively inhibit dopamine receptor D2 (DRD2), a member of the G protein-coupled receptor (GPCR) family. MTT assays to determine the sensitivity of DIPG cells to ONC201 revealed a slight but not significantly different response to the drug based on their expression of wild type (WT) histone H3 or histone H3K27M mutant protein, with IC50 values in the range of 3-8mM. Decrease in cell growth was associated with a decrease in AKT and ERK phosphorylation and an increase in TRAIL expression. In vivo, intraperitoneal administration of ONC201 to mice bearing pontine DIPG tumors, once every week for 6 weeks, caused a significant reduction in tumor burden relative to untreated controls as measured by bioluminescence assays. However, stoppage of treatment resulted in tumor regrowth within 6 weeks, suggesting the existence of a population that were not eliminated by the current schedule of ONC210. Single cell proteomic analyses-based comparison of untreated and ONC201-treated DIPG cells showed an expected global reduction in pro-survival signals such as phosphorylated AKT and ERK. Molecules with potential to predict susceptibility of cells to ONC201 were also revealed, and are being confirmed by transcriptome analyses. Results of a chemical screen to target ONC201-refractory tumor cells will be discussed.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4814
Author(s):  
Ricardo G. Amaral ◽  
Silvana V. F. Gomes ◽  
Luciana N. Andrade ◽  
Sara A. dos Santos ◽  
Patrícia Severino ◽  
...  

Passiflora alata or passion fruit is a native flowering plant from Amazon, geographically spread from Peru to Brazil. The plant has long been used in folks medicine for its pharmacological properties and is included in the Brazilian Pharmacopoeia since 1929. The aim of this study was to evaluate the potential cytotoxic and antitumor activities of Passiflora alata leaf extract (PaLE) in S180-tumor bearing mice. The percentage of cell proliferation inhibition (% CPI) and IC50 in relation to 4 tumor cell lines were determined in PC3, K-562, HepG2 and S180 cell lines using the MTT assay. PaLE showed a CPI > 75% and greater potency (IC50 < 30 µg/mL) against PC3 and S180 cell lines. PaLE showed antitumor activity in treatments intraperitoneally (36.75% and 44.99% at doses of 100 and 150 mg/kg/day, respectively). Toxicological changes were shown in the reduced body mass associated with reduced food consumption, increased spleen mass associated with histopathological increase in the white pulp of the spleen and increased number of total leukocytes with changes in the percentage relationship between lymphocytes and neutrophils. Our outcomes corroborate the conclusion that PaLE has antitumor activity in vitro and in vivo with low toxicity.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 10 ◽  
Author(s):  
Hehua Xiong ◽  
Jianxin Cheng ◽  
Jianqing Zhang ◽  
Qian Zhang ◽  
Zhen Xiao ◽  
...  

A series of 4-(pyridin-4-yloxy)benzamide derivatives containing a 1,2,3-triazole fragment were designed, synthesized, and their inhibitory activity against A549, HeLa, and MCF-7 cancer cell lines was evaluated. Most compounds exhibited moderate to potent antitumor activity against the three cell lines. Among them, the promising compound B26 showed stronger inhibitory activity than Golvatinib, with IC50 values of 3.22, 4.33, and 5.82 μM against A549, HeLa, and MCF-7 cell lines, respectively. The structure–activity relationships (SARs) demonstrated that the modification of the terminal benzene ring with a single electron-withdrawing substituent (fluorine atom) and the introduction of a pyridine amide chain with a strong hydrophilic group (morpholine) to the hinge region greatly improved the antitumor activity. Meanwhile, the optimal compound B26 showed potent biological activity in some pharmacological experiments in vitro, such as cell morphology study, dose-dependent test, kinase activity assay, and cell cycle experiment. Finally, the molecular docking simulation was performed to further explore the binding mode of compound B26 with c-Met.


Sign in / Sign up

Export Citation Format

Share Document