scholarly journals Molecular Mechanism behind the Synergistic Activity of Proteasome Inhibition and PRC2 Inhibition in the Treatment of Multiple Myeloma

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 312-312
Author(s):  
Ola Rizq ◽  
Naoya Mimura ◽  
Motohiko Oshima ◽  
Atsunori Saraya ◽  
Shuhei Koide ◽  
...  

Abstract Proteasome inhibitors (PIs) such as bortezomib and carfilzomib play a central role in the treatment of multiple myeloma (MM). However, the almost inevitable resistance to PIs necessitates the search for novel strategies to improve patient outcome. The methyltransferase EZH2 and its homolog EZH1 are components of polycomb repressive complex 2 (PRC2), inducing H3K27me3 and repressing the transcription of target genes. Recent studies have linked EZH2 to tumorigenesis including MM. In this study, we investigated the molecular mechanism of PRC2 inhibition as a partner of PIs for the treatment of MM. We first examined the impact of proteasome inhibition on EZH2. Bortezomib as well as carfilzomib remarkably decreased EZH2 protein, and downregulated its mRNA in dose- and time-dependent manners. As EZH2 is a downstream target of E2F1, the effects of bortezomib on RB-E2F pathway were investigated. Bortezomib downregulated E2F1 protein and mRNA with notable decrease of phosphorylated RB protein, due to accumulation of cyclin-dependent kinase inhibitors such as p21 and p27. ChIP assay revealed that bortezomib significantly inhibited the binding of E2F1 to EZH2 promoter, and E2F1 overexpression resulted in upregulation of EZH2 in MM cells. These data suggest that bortezomib transcriptionally downregulates EZH2 via modulating RB-E2F pathway. Next we used lentiviral vectors to overexpress EZH2 in RPMI8226 cells and observed diminished sensitivity to bortezomib in EZH2-overexpressing cells compared to cells transduced with an empty vector. Remarkably, the combined treatment of bortezomib and UNC1999, a dual inhibitor of EZH2 and EZH1, restored the sensitivity of MM cells to bortezomib. Notably, UNC1999 enhanced the cytotoxicity induced by bortezomib in vitro and in vivo partly through enhanced apoptosis. Carfilzomib also demonstrated strong synergy with UNC1999 in vitro, suggesting broad application of this strategy. To characterize the mechanism of action of PRC2 inhibition alone and in combination with proteasome inhibition, we performed RNA sequencing (RNA-seq) of MM.1S cells treated with UNC1999, bortezomib or the combination of both agents versus DMSO-treated cells and chromatin immunoprecipitation sequencing (ChIP-seq) for H3K27me3 of UNC1999 versus DMSO-treated MM.1S cells. Importantly, we identified the direct targets of UNC1999 as those with significantly enhanced expression (>1.5 fold UNC1999/Control) and remarkable reduction of H3K27me3 (≥ 2-fold). These genes included NR4A1, EGR1 and LTB. EGR1 and LTB are known tumor suppressor candidates in MM, while NR4A1 is implicated in myeloid and lymphoid malignancies. Upregulation of NR4A1 and reduction of H3K27me3 at the NR4A1promotor were confirmed using manual RT-PCR and ChIP, respectively. Notably, overexpression of NR4A1 significantly inhibited the growth of MM cells, suggesting a tumor suppressive role for NR4A1 in MM. Notably, MYC (c-Myc), a major contributor to the pathogenesis of MM, was greatly downregulated in NR4A1-overexpressing cells. MYC is reportedly a direct target of NR4A1 that suppresses its expression. We found that UNC1999 downregulated MYC mRNA and protein. Moreover, the combination of UNC1999 and bortezomib remarkably suppressed MYC-related gene sets. Gene set enrichment analysis (GSEA) showed that while PRC2 genes were positively enriched in UNC1999- and combination-treated cells, they were not significantly enriched in bortezomib-treated cells. In addition, although bortezomib downregulated EZH2, EZH1 and H3K27me3 mark were not affected in bortezomib-treated cells. This suggested that inhibition of EZH2 alone is not enough to completely suppress PRC2 function. Therefore, we compared the combination of bortezomib and UNC1999 with that of bortezomib and a specific EZH2 inhibitor, GSK126. UNC1999 induced much better synergistic activity with bortezomib than GSK126 as evidenced by the combination index, associated with further reduction of the levels of H3K27me3. This underlines the importance of dual inhibition of EZH2 and EZH1 to fully block PRC2 activity. In conclusion, our findings demonstrate that the combination of dual inhibition of EZH2 and EZH1 together with proteasome inhibition cooperatively blocks PRC2 function, resulting in derepression of tumor suppressors such as NR4A1 and inhibition of MYC. Thus, this combination is a promising new therapeutic option for the treatment of MM. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2656-2656
Author(s):  
Ioanna Savvidou ◽  
Tiffany Khong ◽  
Irena Carmichael ◽  
Jaynish S Shah ◽  
Sridurga Mithraprabhu ◽  
...  

Abstract Aim: Despite the adoption of novel therapeutic modalities, Multiple Myeloma (MM) remains incurable. The Bcl2 inhibitor Venetoclax is active in several haematologic malignancies, but the benefits in MM patients are limited to those with the t(11;14) and/or high Bcl2 expression. These results underscore the significance of Bcl2 alternative anti-apoptotic proteins (Mcl1 and BclxL) for the survival of myeloma cells. Method: We validated the anti MM effect of the Mcl1 inhibitor S63845 both in vitro utilising 11 human myeloma cell lines (HMCL) and ex vivo against n=30 primary MM tumours. Comparative analysis of RNAseq between S63845 sensitive and resistant HMCL was undertaken to identify candidate proteins that potentially modulate resistance to S63845. Treatment with S63845 and rationally selected combination partners was further evaluated in vitro, ex vivo and in vivo with flow cytometry, immunoblotting and live imaging mitochondria fitness monitoring. Results: RNAseq identified BclxL as potential mediator of resistance to S63845 in HMCL. Immunoblotting confirmed high BclxL expression and high BclxL/BclS in S63845 resistant HMCL. Five S63845 resistant HMCL (U266, ANBL6, KMS28PE, EJM, MM1R) and primary tumours were treated with S63845 combined with the BclxL inhibitor A1331852 . Combined treatment of the HMCL demonstrated a high Bliss synergy score for all the HMCL tested (54, 42, 24, 47, 45 for U266, EJM, KMS28PE, MM1R and ANBL6 respectively) and induced synergistic killing of 80% of the primary tumours treated. Dual inhibition in U266 induced an 80% drop in intracellular ATP at 4h with an increase in active Caspases 9 and 8 (4.5 and 5 fold, respectively). Similarly, the combination induced a 78% drop in mitochondrial transmembrane potential (TMRE intensity) by 4h with live imaging revealing striking mitochondrial damage as early as 40 minutes after exposure (figure). These changes were associated with a reduction of both Mcl1 and, BclxL proteins and Bim and Bid protein levels. No changes were seen in the level of Bcl2, Bak or Bax protein expression. The combination of S63845 and A1331852 in healthy NSG mice at 12.5mg/kg proved lethal due to hepatotoxicity, arguing against the clinical utility of such an approach. However, this observed anti-MM synergistic activity was recapitulated when S63845 was combined with the already approved anti-MM therapeutic panobinostat, with the induction of a significant reduction in both BclxL and Myc protein levels at 24h, and synergistic killing of 56% of primary tumours. Conclusion: High BclxL expression and BclxL/BclxS ratio correlates with resistance to the Mcl1 inhibitor S63845. A combinatorial approach targeting Mcl1 and BclxL induced immediate and significant anti-MM effect both in vitro and ex vivo but proved to be toxic in vivo. Combination of the anti-MM therapeutic panobinostat in combination with S635845 recapitulated the anti-MM activity seen with A1331852 and warrants further evaluation. Figure 1 Figure 1. Disclosures Spencer: Celgene: Honoraria, Research Funding, Speakers Bureau; Janssen: Honoraria, Research Funding, Speakers Bureau; Amgen: Honoraria, Research Funding; Bristol Myers Squibb: Research Funding; Takeda: Honoraria, Research Funding, Speakers Bureau; STA: Honoraria.


Oncogene ◽  
2021 ◽  
Author(s):  
Yinyin Xu ◽  
Jing Guo ◽  
Jing Liu ◽  
Ying Xie ◽  
Xin Li ◽  
...  

AbstractMyeloma cells produce excessive levels of dickkopf-1 (DKK1), which mediates the inhibition of Wnt signaling in osteoblasts, leading to multiple myeloma (MM) bone disease. Nevertheless, the precise mechanisms underlying DKK1 overexpression in myeloma remain incompletely understood. Herein, we provide evidence that hypoxia promotes DKK1 expression in myeloma cells. Under hypoxic conditions, p38 kinase phosphorylated cAMP-responsive element-binding protein (CREB) and drove its nuclear import to activate DKK1 transcription. In addition, high levels of DKK1 were associated with the presence of focal bone lesions in patients with t(4;14) MM, overexpressing the histone methyltransferase MMSET, which was identified as a downstream target gene of hypoxia-inducible factor (HIF)-1α. Furthermore, we found that CREB could recruit MMSET, leading to the stabilization of HIF-1α protein and the increased dimethylation of histone H3 at lysine 36 on the DKK1 promoter. Knockdown of CREB in myeloma cells alleviated the suppression of osteoblastogenesis by myeloma-secreted DKK1 in vitro. Combined treatment with a CREB inhibitor and the hypoxia-activated prodrug TH-302 (evofosfamide) significantly reduced MM-induced bone destruction in vivo. Taken together, our findings reveal that hypoxia and a cytogenetic abnormality regulate DKK1 expression in myeloma cells, and provide an additional rationale for the development of therapeutic strategies that interrupt DKK1 to cure MM.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Lu Gao ◽  
Minjie Gao ◽  
Guang Yang ◽  
Yi Tao ◽  
Yuanyuan Kong ◽  
...  

Relapse of disease and subsequent resistance to established therapies remain as major challenges in the treatment of multiple myeloma (MM). New therapeutic options are needed for these extensively pretreated patients. To explore an optimized combinational therapy, interactions between the irreversible proteasome inhibitor carfilzomib exhibiting a well-tolerated side-effect profile and histone deacetylase inhibitor (HDACi) panobinostat (LBH589) were examined in MM cells. Coadministration of carfilzomib and LBH589 led to a synergistic inhibition of proliferation in MM cells. Further studies showed that the combined treatment synergistically increased mitochondrial injury, caspase activation, and apoptosis in MM cells. Lethality of the carfilzomib/LBH589 combination was associated with the reactive oxygen species (ROS) generation and ERK1/2 inactivation. In addition, the free radical scavenger N-acetylcysteine (NAC) could block carfilzomib and LBH589-induced oxidative stress and the subsequent apoptosis. Together, these findings argue that the strategy of combining carfilzomib and LBH589 warrants attention in MM.


1997 ◽  
Vol 41 (9) ◽  
pp. 2006-2008 ◽  
Author(s):  
J R Forney ◽  
S Yang ◽  
M C Healey

The combined effect of the serine protease inhibitor alpha-1-antitrypsin (AAT) and the aminoglycoside paromomycin on Cryptosporidium parvum infection in vitro was investigated. AAT and paromomycin were mixed with C. parvum oocysts as either single or combined treatments and used to inoculate epithelial cell cultures. Single- and combined-treatment groups had significantly lower (P < 0.01) parasite numbers than untreated controls. The mean fractional inhibitory concentration indices suggested significant synergistic activity.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1566-1566
Author(s):  
Tiffany Khong ◽  
Janelle Sharkey ◽  
Andrew Spencer

Abstract Azacytidine (AZA), a DNA methyltransferase inhibitor, has been shown to inhibit cell growth and induce apoptosis in some cancer cells. We determined the impact of AZA on a panel of human myeloma cell lines (HMCL); KMS 12PE, KMS 18, LP-1, NCI-H929, OPM-2, RPMI-8226 and U266 and in an in vivo murine model of multiple myeloma (5T33 model). Dose responsiveness to AZA was determined via MTS assays with a range of AZA doses (1–10mM) for 72 hours. FACS and cell cycle analysis were used to evaluate the profile of the cells after exposure to AZA for 72 hours. MTS assays demonstrated a dose and time dependent AZA-induced inhibition of HMCL viability with effective concentrations of AZA ranging from 1–10 mM. This was associated with accumulation of cells in the Go/G1 phase with decreasing number of cells in the S and G2/M phases. Western Blot analysis using antibodies against caspases 3,8,10, PARP, phospho-ERK, ERK, Stat3 and phospho -Stat3 were performed to help characterize the mechanism(s) of cell killing. Cleavage of caspases 3,8,10 and PARP within 24 hours of AZA treatment confirmed early AZA-induced HMCL apoptosis. phospho-ERK which was absent in untreated U266 appeared after 48 hours exposure to 5mM AZA. Similarly inhibitors of caspases 3,8 and 9 were used to determine which apoptotic pathway was being preferentially activated by AZA. Inhibitors of both caspase 3 and 9 effectively abrogated AZA-induced apoptosis in U266 and NCI-H929. In contrast caspase 8 inhibitor was less effective which is consistent with AZA acting via the mitochondrial apoptotic pathway. Reactivation of p16 gene by AZA-induced hypomethylation was assessed with methylation specific PCR. MSP-PCR of the p16 gene indicated a loss of methylation and up-regulated transcription after 48 hours treatment with 5 mM AZA. The level of IL-6 in conditioned media from U266 cells treated with AZA was determined by ELISA assay and demonstrated a rapid fall in autocrine IL-6 production. RT-PCR demonstrated rapid AZA-induced cessation of IL-6 transcription temporarily associated with the disappearance of upstream phospho -Stat3. Addition of exogenous IL-6 did not rescue U266 from AZA-induced apoptosis. AZA was also administered to a 5T33 murine model of multiple myeloma at increasing concentrations (1, 3, 10 mg/kg). At 10 mg/kg the median survival of vehicle versus AZA treated mice was 28 days versus 30+ days (p=0.003). These findings justify further evaluation of AZA as a potential therapeutic agent for multiple myeloma.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3660-3660 ◽  
Author(s):  
Xiaojing Wang ◽  
Anthony L. Sinn ◽  
Attaya Suvannasankha ◽  
Colin D. Crean ◽  
Li Chen ◽  
...  

Abstract ENMD-2076 is a novel, orally-active molecule that has been shown to have significant activity against Aurora A kinase as well as multiple receptor tyrosine kinases (RTK). We investigated the single agent activity of ENMD-2076 against MM cells in vitro and in vivo, and in combination with lenalidomide. ENMD-2076 free base showed significant cytotoxicity against MM cells with a mean LC50 of 3.84±0.86 μM at 48 hours in vitro. Cytotoxicity was associated with cleavage of caspase 3, 8, 9 and PARP, and loss of mitochondrial membrane potential as early as 6 hours. ENMD-2076 free base inhibited c-kit, FGFR-1, 3 and VEGFR1 and subsequently inhibition of downstream targets phosphorylated (p)-BAD, p-Foxo1a and p-GSK-3β was observed at 6 hours. NOD/SCID mice implanted with H929 human plasmacytoma xenografts and treated for 30 days with 50, 100, 200mg/kg/d ENMD-2076 showed a dose-dependent inhibition of tumor growth (Figure 1), with minimal toxicity as assessed by the stable weight of treated animals. Immunohistochemical staining of tumors from sacrificed animals showed significant reduction in Ki67 at all dose levels of treatment compared to control tumors. An increase in cleaved caspase-3 was observed on Western blot from the lysates of H929 tumors obtained from treated animals. ENMD-2076 free base also showed synergistic cytotoxic activity when combined with lenalidomide against H929, MM1.R and MM1.S cells as assessed by MTT assay and Annexin-V/PI staining. Using the Chou-Talalay method, the combination indices (CI) were < 1 for all three cell lines across a range of concentrations of ENMD-2076 free base (0.25–1.0 μM) plus lenalidomide (2.5–10 μM) indicating synergistic activity (CI=0.362 H929; CI=0.315 MM1.R; CI=0.415 MM1.S). Our results provide rationale for the investigation of ENMD-2076 alone and in combination with lenalidomide in patients with multiple myeloma. Figure Figure


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2640-2640
Author(s):  
Niels E Franke ◽  
Gertjan L Kaspers ◽  
Nynke van den Berg ◽  
Ina van Zantwijk ◽  
Katarina Vojtekova ◽  
...  

Abstract The proteasome inhibitor bortezomib (BTZ, PS-341, Velcade®) has proven to be an effective drug in the treatment of multiple myeloma (MM) patients, both in first line as in refractory disease. However, emergence of drug resistance, for which the molecular mechanism(s) remain elusive, can hamper its clinical efficacy. Recently, we showed (Oerlemans & Franke, Blood 2008) that resistance to BTZ in human THP1 acute myeloid leukemia cells was conferred by an acquired mutation in the PSMB5 gene. This mutation introduced an amino acid substitution in the highly conserved substrate binding pocket of the β5 subunit of the proteasome, which is the primary target of BTZ. In the present study we investigated whether chronic exposure to BTZ could provoke acquired resistance to BTZ in the human RPMI-8226 MM cell line model and whether a PSMB5 gene mutation would be responsible. To this end, 8226 cells were exposed in vitro to stepwise increasing concentrations of BTZ from 0.1 nM BTZ up to 7nM (8226/BTZ7) over a period of 6 months and up to 30nM (8226/BTZ30) over a period of 12 months. In parallel to these selective concentrations, RPMI-8226 cells were cultured without BTZ (8226/WT). Characterization of 8226/BTZ7 vs 8226/WT cells revealed: 2.6-fold resistance to BTZ along with cross-resistance to other peptide-based proteasome inhibitors; MG132 (2.2-fold), MG262 (1.9-fold) and 4A6 (4.9 fold), unchanged sensitivity to other anti-MM drugs, including doxorubicin, melphalan and thalidomide, a marked gain in sensitivity for the glucocorticoids dexamethasone (IC50: 25 nM vs &gt;10 uM, respectively) and prednisolone (IC50: 2 uM vs &gt; 1000 uM, respectively), other than 8226/WT cells, no G2M cell cycle arrest after BTZ exposure in 8226/BTZ7 cells, no significant changes in mRNA and functional activity of the three dominant catalytic subunits of the proteasome; β1, β2 and β5, although at a protein level β5 expression was markedly increased (5–10 fold), and sequencing of the PSMB5 gene in 8226/BTZ7 and 8226/BTZ30 cells, and one clinical sample of plasma cells of a BTZ-resistant plasma cell leukemia patient, showed no evidence for PSMB5 mutations. Microarray experiments were initiated to further elicit possible molecular mechanism(s) of BTZ resistance in 8226/BTZ7 cells. Initial analysis showed upregulation of several genes involved in microenvironment interaction and plasma cell differentiation. In this context, Gene Set Enrichment Analysis (GSEA) showed enrichment in the 8226/BTZ7 for the gene sets related to CD138 upregulation and MYC upregulation, indicative for a more differentiated phenotype of 8226/BTZ7 cells. Consistently, immune phenotypic characterization showed a shift to a dominant CD138dim/CD45+/CD20dim/CD27dim cell population for 8226/WT cells grown in parallel with 8226/BTZ7, which retained a CD138+/CD45−/CD20−/CD27− marker profile. Collectively, these data indicate that, other than in acute leukemia, the onset of acquired resistance to BTZ in 8226 MM cells proceeds very slowly, is associated with the upregulation of a (non-mutated) β5 catalytic proteasome subunit, and goes along with a shift towards a more mature immune phenotype in combination with an enrichment of genes that support cell growth. Notwithstanding this fact, the marked sensitization of BTZ-resistant 8226 MM cells for glucocorticoids may further corroborate the use of these drugs in combination with BTZ.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3065
Author(s):  
Shreya Udawant ◽  
Carl Litif ◽  
Alma Lopez ◽  
Bonnie Gunn ◽  
Erin Schuenzel ◽  
...  

Glioblastoma (GBM) is the most lethal primary brain cancer that lacks effective molecular targeted therapies. The PI3K/AKT/mTOR pathway is activated in 90% of all Glioblastoma multiforme (GBM) tumors. To gain insight into the impact of the PI3K pathway on GBM metabolism, we treated U87MG GBM cells with NVP-BEZ235 (PI3K and mTOR a dual inhibitor) and identified differentially expressed genes with RNA-seq analysis. RNA-seq identified 7803 differentially regulated genes in response to NVP-BEZ235. Gene Set Enrichment Analysis (GSEA) identified two glycolysis-related gene sets that were significantly enriched (p < 0.05) in control samples compared to NVP-BEZ235-treated samples. We validated the inhibition of glycolytic genes by NVP-BEZ235 and examined the impact of the FOXO1 inhibitor (AS1842856) on these genes in a set of GBM cell lines. FOXO1 inhibition alone was associated with reduced LDHA expression, but not ENO1 or PKM2. Bioinformatics analyses revealed that PI3K-impacted glycolytic genes were over-expressed and co-expressed in GBM clinical samples. The elevated expression of PI3K-impacted glycolytic genes was associated with poor prognosis in GBM based on Kaplan–Meier survival analyses. Our results suggest novel insights into hallmark metabolic reprogramming associated with the PI3K-mTOR dual inhibition.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3281-3281
Author(s):  
Saravanan Ganesan ◽  
Nithya Balasundaram ◽  
Hamenth Kumar Palani ◽  
Ansu Abu Alex ◽  
Sachin David ◽  
...  

Abstract Recent evidences suggests that the efficacy of Lenalidomide (LEN) depends upon its ability to degrade IKZF1 and IKZF3 proteins via cereblon dependent ubiquitin proteasome pathway [Science. 2014 Jan 17; 343(6168): 301-305]. Based on this model it would theoretically be antagonistic to combine LEN with proteasome inhibitors (PI). However, it is well recognized that there is significant synergism when LEN is combined with PI and this combination is routinely and effectively used in the clinic. The mechanism of synergy and the fate of IKZF1 and IKZF3 when these two agents are combined is poorly understood. We undertook a series of experiments to study the fate of IKZF1 when this combination of drugs was used in multiple myeloma cells. Combining LEN (1uM) along with bortezomib (BTZ; 1nM) a PI showed a significant kill on U266 cells (myeloma cell line) on day 5 post treatment (n=3; P=0.02) when compared to either of the agents alone. In an MTT assay, the synergism was well documented with a combination index of 0.5 (Fig 1a). Next we assessed the function of proteasome (chymotrypsin activity) when LEN was combined with PI. We observed that LEN alone does not interfere with proteasome activity. It was noted that BTZ alone at the concentration used (5 nM) was able to effectively inhibit the activity of proteasome (Fig 1b). It was also observed that combining these two agents does not interfere with BTZ action in inhibiting proteasome complex (Fig 1b). As a result of efficient proteasome inhibition, we observed an accumulation of ubiquitinated proteins in the BTZ and LEN + BTZ treated cells when compared to control and LEN alone treated cells (Fig 1c). Next, we looked for the fate of IKZF1 in U266 cells treated with LEN, BTZ and in combination of both the drugs. As reported, we observed a degradation of IKZF1 in U266 cells upon treatment with LEN. While we did not see any degradation of IKZF1 in BTZ alone treated cells. It was noted that in combination treated cells (LEN+BTZ) there was a degradation of IKZF1 (Fig 1c). In spite of significant proteasome complex inhibition, degradation of IKZF1 was observed which suggested a proteasome independent mechanism. It is well known that proteasome inhibition results in upregulation of the autophagy pathway which in turn can degrade the accumulated ubiquitinated proteins. We noted that upon treatment with BTZ or LEN+BTZ an induction of autophagy was observed, as evidenced by an increase in generation of LC3II bands on an immunoblot (Fig 1c). To support our hypothesis that IKZF1 is degraded by autophagy in the absence of proteasome complex, we pre-treated the U266 cells with an autophagy inhibitor (3-methyladenine) followed by treatment with LEN and BTZ and noted an accumulation of IKZF1 proteins (Fig 1d). We also observed a downregulation of IKZF1 target genes IRF4 and c-MYC by 12 and 24 hours in the combination treated cells (data not shown). Taken together this data demonstrates that there is (i) significant in-vitro synergism between the two agents (ii) the combination additively induces autophagy pathway (iii) IKZF1 protein can be degraded via this autophagy pathway in the presence of effective proteasome inhibition. While additional mechanisms of synergy between these two agents cannot be excluded, further enhancing autophagy pathway in these cells by drugs like sirolimus (autophagy inducer in myeloma cells) could potentially improve the synergy between these two drugs. Disclosures No relevant conflicts of interest to declare.


Endocrinology ◽  
2020 ◽  
Vol 161 (6) ◽  
Author(s):  
Maiko Kakita-Kobayashi ◽  
Hiromi Murata ◽  
Akemi Nishigaki ◽  
Yoshiko Hashimoto ◽  
Shinnosuke Komiya ◽  
...  

Abstract Endometrial stromal cells differentiate into decidual cells through the process of decidualization. This differentiation is critical for embryo implantation and the successful establishment of pregnancy. Recent epidemiological studies have suggested that thyroid hormone is important in the endometrium during implantation, and it is commonly believed that thyroid hormone is essential for proper development, differentiation, growth, and metabolism. This study aimed to investigate the impact of thyroid hormone on decidualization in human endometrial stromal cells (hESCs) and define its physiological roles in vitro by gene targeting. To identify the expression patterns of thyroid hormone, we performed gene expression profiling of hESCs during decidualization after treating them with the thyroid hormone levothyroxine (LT4). A major increase in decidual response was observed after combined treatment with ovarian steroid hormones and thyroid hormone. Moreover, LT4 treatment also affected the regulation of many transcription factors important for decidualization. We found that type 3 deiodinase, which is particularly important in fetal and placental tissues, was upregulated during decidualization in the presence of thyroid hormone. Further, it was observed that progesterone receptor, an ovarian steroid hormone receptor, was involved in thyroid hormone–induced decidualization. In the absence of thyroid hormone receptor (TR), due to the simultaneous silencing of TRα and TRβ, thyroid hormone expression was unchanged during decidualization. In summary, we demonstrated that thyroid hormone is essential for decidualization in the endometrium. This is the first in vitro study to find impaired decidualization as a possible cause of infertility in subclinical hypothyroidism (SCH) patients.


Sign in / Sign up

Export Citation Format

Share Document