Stroma-Based Activation of pSTAT3Y705 Confers Resistance to FLT3 Inhibitors in FLT3 ITD-Positive AML

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 34-34 ◽  
Author(s):  
Ami Patel ◽  
Anthony D. Pomicter ◽  
Anna M. Eiring ◽  
Than Hein ◽  
William L. Heaton ◽  
...  

Abstract Acute myeloid leukemia (AML) is an aggressive hematopoietic neoplasm that carries the worst prognosis among the hematologic malignancies. Up to 30% of AML patients exhibit activating mutations in FLT3 tyrosine kinase. FLT3 internal tandem duplications (ITDs) comprise ~70% of these mutations and are associated with a poor prognosis. Most patients treated with a single-agent FLT3 tyrosine kinase inhibitor (TKI) relapse within months due to secondary mutations in the FLT3 tyrosine kinase domain (TKD). Results from trials of FLT3 TKIs in AML reveal that leukemic blasts are more easily cleared from peripheral blood than from bone marrow (BM), suggesting that the BM microenvironment promotes survival of AML cells, including leukemia initiating cells, despite inhibition of FLT3. In this conceptual framework, extrinsic factors allow AML cells to survive TKI exposure until AML cell-intrinsic resistance is conferred by FLT3 TKD mutations, leading to clinical relapse. Here, we investigated the role of the BM microenvironment in protection of FLT3+AML cells from treatment with AC220 (quizartinib), a clinically available FLT3 TKI. To investigate the potential of the BM microenvironment to mediate TKI resistance in AML, we cultured FLT3-ITD+ AML cell lines, including MOLM-13, MOLM-14 and MV411, and the CML cell line, K562 (control; FLT3 wild-type), with graded concentrations of AC220 under the following conditions: (i) in regular medium (RM), (ii) in direct contact (DC) with human HS-5 BM stromal cells, or (iii) in HS-5 conditioned medium (CM). Cell proliferation and apoptosis assays revealed that, in RM,AC220 reduced proliferation and increased apoptosis of MOLM-13, MOLM-14 and MV411 cells, but had no effect on K562 cells. DC greatly reduced the effects of AC220 in all three FLT3-ITD+ AML cell lines, with comparable results observed between DC and CM. To confirm these data using primary cells, CD34+ blasts from a patient with newly diagnosed FLT3-ITD+ AML were similarly cultured in RM versus CM ± AC220. Consistent with results in cell lines, CM rescued primary AML cells from AC220-mediated cell death. These data indicate that soluble factors from the BM environment protect FLT3-ITD+ cells from the effects of FLT3 inhibition. Our lab and others have demonstrated that HS-5 DC and CM activate STAT3 in chronic myeloid leukemia, which mediates resistance to BCR-ABL1 TKIs (Bewry et al. Mol Cancer Ther 2008, Traer et al. Leukemia 2012, Eiring et al. Leukemia 2015). To interrogate the role of STAT3 in BM-mediated protection of AML cells from FLT3 inhibition, all cell lines were assessed for pSTAT3Y705 and total STAT3 by immunoblot analysis under each culture condition. In FLT3-ITD+ AML cells grown in RM, pSTAT3Y705 was undetectable, irrespective of AC220 dose. In contrast, pSTAT5Y694 was readily detected at steady state and suppressed by AC220. AML cells cultured in HS-5 DC or in HS-5 CM exhibited strong upregulation of pSTAT3Y705 that was unaffected by AC220, suggesting that soluble factor(s) promote STAT3 activation in AML. pSTAT5Y694, on the other hand, was slightly elevated by HS-5 DC or CM, but remained under control of FLT3 kinase activity. In order to mechanistically implicate STAT3 activation in stroma-based protection, we used a retroviral shRNA construct to knockdown STAT3 (shSTAT3) compared to an empty vector control (LMP) in MOLM-14 cells. STAT3 knockdown (~70%) was confirmed by qRT-PCR and immunoblot analyses. Cells containing shSTAT3 and LMP were cultured for 72 hours in RM or CM ± AC220, followed by analysis using MTS assays. As expected, CM increased the IC50 of AC220 from 1.37 nM to 6.24 nM in LMP-expressing cells (n=3). In contrast, shSTAT3 reduced the IC50 of AC220 from 6.24 nM to 2.87 nM (n=3) in CM, with minimal effects in RM. Similarly, pharmacologic inhibition of STAT3 using the novel STAT3 inhibitor, BP-5-087 (Eiring et al. Leukemia 2015), reduced the IC50 of AC220 from 10.07 nM to 5.91 nM in CM. Analogous experiments in additional FLT3-ITD+cell lines and primary AML cells, using shSTAT3, dominant-negative STAT3 constructs and BP5-087 are ongoing. Our data suggest that STAT3 is a critical signaling node in FLT3-independent TKI resistance mediated by the BM microenvironment. Therapeutic strategies designed to combine FLT3 and STAT3 inhibition may inhibit the survival of leukemic cells in the BM niche, thereby preventing subsequent clinical relapse conferred by TKD mutations. Disclosures Deininger: Incyte: Consultancy, Membership on an entity's Board of Directors or advisory committees; BMS: Consultancy, Research Funding; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Research Funding; CTI BioPharma Corp.: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; Bristol Myers Squibb: Consultancy, Research Funding; Ariad: Consultancy, Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3139-3139
Author(s):  
Anjan Thakurta ◽  
Anita K Gandhi ◽  
Michelle Waldman ◽  
Chad C. Bjorklund ◽  
Suzanne Lentzsch ◽  
...  

Abstract Background CRBN, a target of thalidomide and IMiDs® immunomodulatory agents lenalidomide (LEN) and pomalidomide (POM), is a component of the E3 ubiquitin cullin 4 ring ligase (CRL4) complex that also includes DDB1, Roc1, and Cul4. Two CRBN mutations have been reported in multiple myeloma (MM) patients: truncating mutation (Q99) and point mutation (R283K). One copy of the CRBN gene was shown to be deleted in the MM1S and MM1S.R cell lines. No DDB1 mutation has been described previously. Results We investigated the incidence of CRBN and DDB1 mutations by next-generation sequencing in 20 MM cell lines and MM subjects. Of 90 MM patients, 24 were newly diagnosed and 66 were relapsed and refractory of which 36 patients were LEN resistant. Out of the cell lines tested, 1 heterozygous CRBN mutation (D249Y) was found in the LEN-resistant ANBL6R cells, which is located in the putative DDB1 binding domain, and 2 single silent mutations were identified in the KMS-12-BM (rs17027638) and OPM-2 cells. One DDB1 heterozygous mutation (E303D) was identified in ANBL6 cells. In the cohort of patients assessed, no CRBN mutation was detected; however, 5 single nucleotide variations (SNV) were identified. Three of the 5 SNVs were at position 735 (Y245Y) and 1 each at position 219 (H73H) and 939 (C313C), respectively. The first 2 SNVs (rs17027638 and rs1045309) are described but not the last. We found a single SNV (P51P; rs2230356) in DDB1 gene the patient samples. Conclusion Mutations within the coding sequences of CRBN and DDB1 are rare in MM patients and cell lines. Most intrinsically LEN-resistant cells and cell lines made resistant to LEN or POM do not have CRBN or DDB1 mutations, suggesting the potential role of other sources, such as genetic or epigenetic pathways in developing resistance to IMiD drug–based therapy. Disclosures: Thakurta: Celgene: Employment, Equity Ownership. Gandhi:Celgene: Employment, Equity Ownership. Waldman:Celgene: Employment, Equity Ownership. Bjorklund:Celgene: Employment, Equity Ownership. Lentzsch:Celgene: Research Funding. Schey:Celgene: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Speakers Bureau; NAPP: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Speakers Bureau; BMS: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Speakers Bureau. Orlowski:Bristol-Myers Squibb: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Millennium: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Onyx: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Resverlogix: Research Funding; Array: Honoraria, Membership on an entity’s Board of Directors or advisory committees; Genentech: Honoraria, Membership on an entity’s Board of Directors or advisory committees; Merck: Membership on an entity’s Board of Directors or advisory committees. Madan:Covance Genomics Lab: Employment. Ning:Celgene: Employment, Equity Ownership. Mendy:Celgene: Employment, Equity Ownership. Lopez-Girona:Celgene: Employment, Equity Ownership. Schafer:Celgene: Employment, Equity Ownership. Avet-Loiseau:Celgene: Research Funding. Chopra:Celgene: Employment, Equity Ownership.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5157-5157
Author(s):  
Laura Eadie ◽  
Timothy P. Hughes ◽  
Deborah L. White

Abstract Tyrosine kinase inhibitors (TKIs) result in excellent responses in most Chronic Myeloid Leukemia (CML) patients. However, up to 35% of patients treated with imatinib (IM) exhibit resistance and more recently nilotinib (NIL) and dasatinib (DAS) resistance have also been observed. Mutations in the BCR-ABL kinase domain (KD) are the main cause of secondary TKI resistance. Other mechanisms include overexpression of BCR-ABL, LYN and ABCB1. Predicting patients with susceptibility to mutation development and disease progression is crucial, thus we investigated the kinetics of TKI resistance emergence in vitro and in vivo. ABCB1 is implicated in TKI efflux hence we postulated that overexpression of ABCB1 leads to reduced intracellular TKI concentrations, resulting in inferior inhibition of Bcr-Abl predisposing cells to resistance development. Accordingly, 3 CML blast crisis (BC) cell lines (K562, K562-Dox, KU812) were cultured in increasing concentrations of IM to 2 μM, NIL to 2 μM and DAS to 200 nM until we observed overt resistance defined as a significant increase in survival in cytotoxicity assays and p-Crkl dependent IC50. Mechanisms of resistance were investigated in cell line intermediates: BCR-ABL, ABCB1 and LYN mRNA expression levels were determined by RT-PCR and KD mutation sequencing was performed. In our TKI resistant cell lines (Table 1), an increase in ABCB1 mRNA was the initial change observed prior to the development of additional resistance mechanisms (KD mutations, ABCB1 BCR-ABL and LYN overexpression). Interestingly, in 4/6 cells lines ABCB1 mRNA reduced to basal levels or below following establishment of these additional resistance mechanisms. ABCB1 levels were assessed in 37 de novo CML patients treated with IM who achieved major molecular response (MMR) compared with patients who progressed to BC, lost MMR or developed KD mutations. ABCB1 levels were determined in blood at diagnosis and following therapy (selected patients summarized in Table 2). A sustained >2 fold rise in ABCB1 was observed prior to disease progression in 3/3 patients and in 13/16 patients who did not achieve MMR. Importantly, the same was not observed in patients who achieved MMR (1/6 patients). The fold change of ABCB1 mRNA at day 22 vs diagnosis in patients achieving MMR was significantly different to that in patients not achieving MMR (p=0.004). ABCB1 increased by >2 fold post therapy and decreased following mutation development in 3/12 patients, confirming observations made in vitro, while 6/12 patients demonstrated sustained increase in ABCB1 post mutation similar to results observed in progression patients. ABCB1 mRNA did not change during therapy in 3/12 patients with mutations. While we recognize the majority of cells present in patients who achieve MMR are normal rather than leukemic, it is important to note that in patients who do not achieve MMR, ABCB1 expression increases in the remaining leukemic cells. We conclude ABCB1 overexpression acts as an initial mediator of resistance, providing a favorable environment for development of further resistance. Sustained increased levels of ABCB1 may contribute to disease progression and lack of response to IM. Additionally, ABCB1 may serve as a prognostic indicator (eg: level at day 22) and potentially assist in development of treatment strategies using TKIs in combination with other medications to enhance intracellular TKI concentration. Disclosures: Hughes: Ariad: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Novartis: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; CSL: Research Funding. White:Novartis: Research Funding; BMS: Research Funding, Speakers Bureau; Ariad: Research Funding; CSL: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3010-3010 ◽  
Author(s):  
Hans Lee ◽  
Hua Wang ◽  
Heather Lin ◽  
Veera Baladandayuthapani ◽  
Jin He ◽  
...  

Abstract Background: The role of dysregulation of the proto-oncogene MYC in both early and late myeloma progression events is well established. Among key MYC -downstream targets is upregulation of ribosomal biogenesis, resulting in increased protein translational capacity and biomass accumulation that is characteristic of neoplastic cells. Thus, given the relationship between myeloma pathobiology, MYC dysregulation, and ribosomal biogenesis, we hypothesized that selective targeting of ribosomal RNA (rRNA) transcription with the small molecule RNA polymerase (pol) I inhibitor CX-5461 (Senhwa Biosciences) may represent a novel therapeutic strategy in myeloma. Methods: Studies with CX-5461 were performed in human myeloma cell lines, isogenic p53 wild-type (wt) and knock-out (KO) p53 cells generated using sequence-specific zinc-finger nucleases, drug-resistant cell lines, primary patient samples, and myeloma murine xenograft models using NOD-SCID IL2Rgnull mice. Results: CX-5461 treatment of p53 wt (MM1.S, MOLP-8) and p53 mutant (U266, RPMI-8226) myeloma cell lines demonstrated a time- and dose-dependent decrease in cell proliferation with a median inhibitory concentration (IC50) at nM levels after 72 hours. A corresponding increase in cleaved-PARP, cleaved caspase-9, and cleaved caspase-3 expression was seen on Western blot as well as increased Annexin V staining on flow cytometry analysis, although this was more pronounced in p53 wt versus mutant cell lines. CX-5461 also retained activity in a panel of cell lines resistant to standard myeloma therapeutic agents (bortezomib, carfilzomib, lenalidomide, and doxorubicin) and in primary patient samples, including a heavily pretreated relapsed/refractory patient and a de novo plasma cell leukemia patient with del 17p. In vivo studies using a systemic isogenic MM1.S p53 wt and KO myeloma murine xenograft model demonstrated significant improvement in median overall survival in the CX-5461-treated p53 wt cohort (41 days vs. not reached, P .05), although outcomes were more modest in the p53 KO cohort with only a trend towards improved survival (P.1) in the drug-treated mice. To probe the p53-independent effects of CX-5461, gene expression profiling and gene set enrichment analysis was performed on isogenic MM1.S and MOLP-8 p53 wt and KO myeloma cell lines treated with CX-5461 or vehicle. These results suggested downregulation of MYC downstream targets as one p53-independent effect of RNA pol I inhibition. qPCR and Western blot studies revealed rapid downregulation of MYC at the transcript level within 1-hour of CX-5461 treatment followed by decreases in MYC protein levels. Previous studies have suggested ribosomal biogenesis is tightly controlled by an auto-regulatory feedback mechanism in which ribosomal proteins such as RPL5 and RPL11 can bind to the 3'UTR of MYC mRNA and facilitate its degradation through the RNA-induced silencing complex (RISC). Because RNA pol I inhibition is known to induce a nucleolar stress response and increase the availability of free ribosomal proteins, RISC-mediated degradation of MYC mRNA was explored as one possible mechanism of CX-5461-mediated MYC downregulation. Indeed, treatment with CX-5461 led to increased pull-down of RPL5 when immunoprecipitated with the RISC subunit TAR (HIV-1) RNA Binding Protein 2 (TARBP2) compared to vehicle-treated controls, and RNA immunoprecipitation assays with the catalytic RISC subunit, Argonaute 2 (AGO2), demonstrated enrichment of MYC mRNA with CX-5461 treatment. These results suggest that CX-5461 may induce degradation of MYC through the cooperative binding of ribosomal proteins, RISC subunits, and MYC mRNA. Finally, to evaluate the role of MYC expression and ribosomal biogenesis in relation to CX-5461 sensitivity, MYC was overexpressed in the H1112 myeloma cell line, which at baseline does not harbor a MYC translocation. MYC overexpression in H1112pCDH-myc cells led to increased basal pre-rRNA transcript levels compared to H1112pCDH cells, and furthermore, led to enhanced sensitivity to CX-5461. Conclusion: RNA pol I inhibition by CX-5461 is a promising target in myeloma therapy, with downregulation of MYC representing one mechanism of action. Moreover, increased MYC expression enhances sensitivity to CX-5461, providing rationale for the clinical translation of CX-5461 for the treatment of myeloma and other MYC-driven cancers. Disclosures O'Brien: Senhwa Biosciences, Inc.: Employment. Keats:Translational Genomic Research Institute: Employment. Orlowski:Bristol-Myers Squibb: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Spectrum Pharmaceuticals: Research Funding; Janssen Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Acetylon: Membership on an entity's Board of Directors or advisory committees; Onyx Pharmaceuticals: Consultancy, Research Funding; Millennium Pharmaceuticals: Consultancy, Research Funding; Forma Therapeutics: Consultancy; Genentech: Consultancy; BioTheryX, Inc.: Membership on an entity's Board of Directors or advisory committees; Array BioPharma: Consultancy, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 43-44
Author(s):  
Massimiliano Bonifacio ◽  
Chiara Elena ◽  
Mariella D'Adda ◽  
Luigi Scaffidi ◽  
Mairi Pucci ◽  
...  

Background. The Philadelphia (Ph) chromosome (chr.) is the hallmark of chronic myeloid leukemia (CML) and typically results from the reciprocal translocation t(9;22)(q34;11.2). Complex variant translocations (CVT) involving one or more additional chr. are identified in less than 5% of newly diagnosed CML. There are conflicting reports about the prognostic impact of CVT in the achievement of optimal response to tyrosine kinase inhibitor (TKI), and very few studies addressed the role of frontline treatment with imatinib or second generation (2G)-TKI in patients with CVT. Aims. To assess the response to imatinib or 2G-TKI in a large cohort of newly diagnosed CML with CVT, and to explore the impact of the different chr. translocations on outcome. Methods. This observational retrospective study was conducted in 19 hematologic centers in the framework of Campus CML, a network of Italian physicians involved in the management of CML patients. All newly diagnosed CML from 2000 to 2019 were evaluated and patients with CVT were selected for the present analysis. Karyotypes were defined according to the 2016 International System for Human Cytogenetic Nomenclature. Responses to frontline treatment were retrospectively categorized according to the 2013 ELN recommendations, as they include cytogenetic milestones. Deep molecular response (DMR, i.e. MR4or better) was defined as BCR-ABLIS ratio ≤0.01% or undetectable disease with ≥10,000 ABL copies. Patients with DMR lasting ≥2 years and at least a Q-PCR test every 6 months were defined as stable DMR responders. Failure-free survival (FFS) was calculated from the start of frontline TKI treatment to progression to advanced phase, death, or switch to other treatments for resistance. For FFS calculation, patients were censored at TKI stop for treatment-free remission (TFR) or in case of switch for intolerance only. Differences between subgroups according to the partner chr. were presented for descriptive purposes. Results. CVT were identified in 109 (3.2%) patients from a whole population of 3,361 subjects with newly diagnosed CML. Ninety-five out of 109 patients (87%) exhibited three-way translocations, with chr. 1, 4, 6, 10, 11, 12, 14, 15 and 17 representing the most common additional partners (figure). Four- and five-way translocations were identified in 13 and 1 patients, respectively. Additional chr. abnormalities (ACA) in the Ph+ cells were observed in 15/109 (13.8%) patients and were more common in older individuals (p=0.018). Overall, median age at diagnosis was 50.6 years (range 20-90). Risk distribution according to the ELTS score was 54%, 28% and 8% for L, I and H risk, respectively (10% missing). Cytogenetic result was available before the choice of frontline treatment in 45% of cases and represented a decisive factor in 28% of them (i.e. clinicians selected a 2G-TKI or high-dose imatinib, according to the available options). Frontline TKI treatment was imatinib in 80 cases (73%) and 2G-TKI (nilotinib n=22, dasatinib n=6, bosutinib n=1) in the remaining cases. The frequency of optimal response at 3, 6 and 12 months was 48%, 45% and 53%, respectively, for imatinib-treated patients, and 76%, 83% and 76%, respectively, for the 2G-TKI cohort (p<0.05 for all comparisons). Stable DMR was achieved by 39% of patients and 42% of them attempted a TFR. After a median follow-up of 91.3 months (range 1-236), 5-year FFS was 66% (95%CI: 53.4-76.4) and 84% (95%CI: 62.4-93.6) for imatinib and 2G-TKI treated patients, respectively (p=ns). The estimated 10-year OS for the entire cohort was 84.4% (95%CI: 73.6-91). The subtype of CVT had an impact on response and long-term outcome. Patients with CVT involving chr. 1, 4, 6, 11 or 12 had a higher frequency of MMR at 12 months than patients with CVT involving chr. 10, 14, 15 or 17 (75.8% vs 30.4%, respectively, p=0.001), higher frequency of stable DMR (48.7% vs 22.2%, respectively; p=0.04) and tended to have better median FFS (p=0.07), regardless of the type of frontline TKI and of the ELTS score. Conclusions. Due to its retrospective nature, this study does not allow to define which is the optimal therapy for CML harboring CVT at diagnosis. However, our data reinforce the usefulness of bone marrow karyotyping in CML. The observed differences between partner chr. may also depend on the breaking points, which are variable. Further dissection of CVT will help to identify which are associated to a poor response to TKIs. Figure Disclosures D'Adda: Incyte: Other: Advisory board; Novartis: Other: Advisory board; Pfizer: Other: Advisory board. Galimberti:Novartis: Speakers Bureau; Incyte: Honoraria. Crugnola:Celgene: Honoraria; Janssen: Honoraria; BMS: Honoraria; Novartis: Honoraria. Bocchia:Incyte: Honoraria; CELGENE: Honoraria. Krampera:Janssen: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Breccia:Incyte: Consultancy, Honoraria; Pfizer: Consultancy, Honoraria; Abbvie: Consultancy; Bristol-Myers Squibb/Celgene: Consultancy, Honoraria; Novartis: Consultancy, Honoraria. Saglio:Novartis: Research Funding; Ariad: Research Funding; Pfizer: Research Funding; Bristol-Myers Squibb: Research Funding; Incyte: Research Funding; Roche: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 138-138
Author(s):  
John Daly ◽  
Subhashis Sarkar ◽  
Alessandro Natoni ◽  
Robert Henderson ◽  
Dawn Swan ◽  
...  

Introduction: Evading Natural Killer (NK) cell-mediated immunosurveillance is key to the development of Multiple Myeloma (MM). Recent attention has focused on the role of hypersialylation in facilitating immune-evasion of NK cells. Abnormal cell surface sialylation is considered a hallmark of cancer and we have implicated hypersialylation in MM disease progression. Certain sialylated glycans can act as ligands for the sialic acid-binding immunoglobulin-like lectin (Siglec) receptors expressed by NK cells (Siglec-7 and Siglec-9). These ITIM motif-containing inhibitory receptors transmit an inhibitory signal upon sialic acid engagement. We hypothesized that desialylation of MM cells or targeted interruption of Siglec expression could lead to enhanced NK cell mediated cytotoxicity of MM cells. Methodology: MM cells were treated with the sialidase neuraminidase prior to co-culture with primary NK (PNK) cells. MM cells were treated with 300µM 3Fax-Neu5Ac (sialyltransferase inhibitor) for 3 days prior to co-cultures with PNK cells. PNK cells were expanded, IL-2 activated (500U/ml) overnight, or naïve (resting). Primary MM samples/MM cell lines were screened with Siglec-7/9 chimeras (10µg/ml). PNK (IL-2 activated) cells were stained with anti-Siglec-7 and anti-Siglec-9 antibodies. Siglec-7 was targeted for knockout (KO) using the CRISPR/Cas9 system, a pre-designed guideRNA and the MaxCyteGT transfection system. MM cells were treated with 10µg/ml of Daratumumab prior to co-culture with expanded PNK cells. Results: Using recombinant Siglec-7/9 chimeras a panel of MM cell lines (MM1S, RPMI-8226, H929, JJN3 and U266) were shown to express ligands for Siglec-7 and Siglec-9 (>85%, n=3). Primary MM cells isolated from BM of newly diagnosed (n=3) and relapsed patients (n=2) were also shown to express Siglec-7 ligands (72.5±17.5%, 36.5% respectively). PNK cells express Siglec-7 and Siglec-9 (94.3±3.3% and 61±8.8% respectively, n=6). Desialylation of the MM cell lines JJN3 and H929 using neuraminidase significantly enhanced killing of MM cells by healthy donor (HD) derived PNK cells (expanded, IL-2 activated and naïve, n=7) at multiple effector:target (E:T) cell ratios. Furthermore, de-sialylation of JJN3 and H929 using neuraminidase resulted in increased NK cell degranulation (CD107α expression), compared to a glycobuffer control (n=7). De-sialylation, using 300µM 3Fax-Neu5Ac, resulted in strongly enhanced killing of MM1S by expanded HD-derived PNK cells at multiple E:T ratios (n=5, p<0.01 at 0.5:1, p<0.001 at 1:1, p<0.01 at 2.5:1). Furthermore, CD38 expression on H929 MM cells significantly increased after treatment with 300µM 3Fax-Neu5Ac for 3 days (p<0.01, n=3). In a cytotoxicity assay, expanded PNK cell-mediated antibody dependent cellular cytotoxicity (ADCC) of H929 MM cells pre-treated with Daratumumab (anti-CD38 moAb) and 3Fax-Neu5Ac was significantly higher than H929 cells pre-treated with Dara (p<0.05 at 0.5:1, p<0.01 at 1:1) or 3Fax-Neu5Ac (p<0.01 at 0.5:1, p<0.01 at 1:1) alone (n=5). Using CRISPR/Cas9, over 50% complete KO of Siglec-7 was observed on expanded PNK cells, yet did not result in enhanced NK cell-mediated cytotoxicity against either H929 or JJN3 (n=7). Siglec-9 KO using CRISPR/Cas9 is ongoing. Discussion: Hypersialylation of MM cells facilitates immune evasion and targeted removal of sialic acid strongly enhances the cytotoxicity of NK cells against MM. However, to date the role of Siglecs remains inconclusive. Nevertheless, our data suggest that targeted desialylation is a novel therapeutic strategy worth exploring in MM. In particular, upregulation of CD38 provides a strong rationale for combinatory strategies employing targeted desialylation with CD38 moAbs such as Daratumumab, with the goal of maximizing ADCC. Disclosures Sarkar: Onkimmune: Research Funding. O'Dwyer:Onkimmune: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Research Funding; GlycoMimetics Inc: Research Funding; AbbVie: Consultancy.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3686-3686
Author(s):  
Paul Brent Ferrell ◽  
William Senapedis ◽  
Alexander Cook ◽  
Erkan Baloglu ◽  
Yosef Landesman ◽  
...  

Abstract Background: Acute myeloid leukemia (AML) is the most common acute leukemia in adults and has a poor outcome with limited treatment options in patients with relapsed or resistant disease. Therapy resistance in AML is likely related to the inadequacy of therapy within leukemia cell subsets, including leukemia stem cells (LSCs). The p21-activated kinase (PAK) family of proteins was shown to be overexpressed in cancer cells and to play a key role in proliferation, survival, and maintenance of cellular structure. The series of orally bioavailable PAK4 allosteric modulators (PAM) have previously been shown to have activity in hematological cancer cell lines, including those derived from acute myeloid leukemia (AML) (Senapedis et al. Blood124, 2208-2208). Understanding how therapies target cellular subsets within primary patient samples could aid drug development by revealing any subset specific drug effects. In this project, we studied the effects of p21-activated kinase 4 (PAK4) modulation in AML samples. PAK4 modulation has been shown to have significant effects on many intracellular signaling pathways, including PI3K/AKT, MAPK/ERK and WNT/β-catenin pathways (Senapedis et al. Blood124, 2208-2208). It is unknown whether PAMs will have similar activity in primary leukemia cells. Likewise, it is currently unclear to what extent PAMs will differentially impact primary cell subsets including leukemia stem cells and non-malignant cell subsets that may be critical to recovery of bone marrow functions. We have previously shown that the single cell biology platform of flow cytometry is well-suited for dissecting clinically relevant signaling network mechanisms in primary human AML (Irish et al. Cell, 118(2):217-28). Methods: Flow cytometry was used to dissect the impact of an orally bioavailable PAM in AML cell lines and primary patient tissue. Cell lines chosen for this study included NRAS mutant KG-1 and Kasumi-1, which carry t(8;21) and express the AML1:ETO fusion protein. Primary AML biopsies were acquired from bone marrow or blood prior to any treatment and patients were identified and consented for this study according to a local Institutional Review Board-approved protocol. AML tissue samples were viably cryopreserved and then assayed ex vivo. Established protocols were used for phospho-specific flow cytometry, fluorescent cell barcoding, and data analysis in Cytobank (Irish et al. Cell, 118(2):217-28, Doxie and Irish, Curr Top Microbiol Immunol. 377:1-21). Results: Differential effects of PAK4 inhibition were observed between cell lines and among cell subsets from AML patient bone marrow. In leukemia cell lines and patient samples, p-ERK and p-S6 showed marked inhibition via PAM, though degree of inhibition varied. In AML patient samples, PAMs blocked signaling responses in p-ERK specifically in AML blasts, but spared normal CD45hi mononuclear cells (0.88 vs. 0.29-fold reduction (arcsinh scale) in p-ERK at 10 nM). Within the AML blast population, CD34+ CD38- and CD34+ CD38+ AML subsets showed similar PAM dose response via p-ERK. Conclusions: Single cell analysis effectively distinguishes effects of PAK4 inhibition via a series of allosteric modulators of PAK4 (PAMs) on leukemia and non-leukemia subsets in the same sample. PAM reduced immediate p-ERK and p-S6 levels in primary leukemia and cell lines. Notably, inhibition in various subsets within human AML was successfully measured by phospho-flow cytometry. Signaling changes in p-ERK were minimal within non-leukemic mature CD45+ mononuclear cells found in primary patient biopsies. Analysis of CD34+ CD38- cells indicates that PAMs could have activity within leukemia stem cells, and, at least, effect the AML progenitors. These findings support further investigation into the mechanism of action and treatment potential of PAMs in AML. Disclosures Senapedis: Karyopharm Therapeutics, Inc.: Employment, Patents & Royalties. Baloglu:Karyopharm Therapeutics Inc.: Employment, Equity Ownership. Landesman:Karyopharm: Employment. Irish:Novartis: Honoraria; Cytobank, Inc.: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Karyopharm: Research Funding; InCyte: Research Funding. Savona:Gilead: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Incyte: Membership on an entity's Board of Directors or advisory committees, Research Funding; Karyopharm: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2745-2745 ◽  
Author(s):  
Deborah L. White ◽  
Liu Lu ◽  
Timothy P. Clackson ◽  
Verity A Saunders ◽  
Timothy P Hughes

Abstract Abstract 2745 Ponatinib is a potent pan-BCR-ABL tyrosine kinase inhibitor (TKI) currently in a pivotal phase 2 clinical trial. Ponatinib (PON) was specifically designed to target both native and all mutant forms of BCR-ABL, including T315I. The phase I study of oral ponatinib in patients with refractory CML/ALL or other hematologic malignancies recently reported that 66% and 53% of patients with CP-CML achieved MCyR and CCyR respectively (Cortes et al., ASH 2011 abstract #210). While extensive modelling experiments in BaF3 cells have been performed characterising in vitro response to ponatinib, little is known about the interactions of this drug and drug transporters that impact the response of other tyrosine kinase inhibitors (TKIs). To explore this we have examined both the degree of in vitro kinase inhibition mediated by ponatinib in BCR-ABL+ cell lines, and the intracellular uptake and retention (IUR) of ponatinib achieved. The IC50 was determined by assessing the reduction in %p-Crkl in response to increasing concentrations of ponatinib in vitro. The IUR assay was performed as previously using [14-C]-ponatinib. To determine the role of ABCB1 and ABCG2, both previously implicated in the transport of other TKIs, IC50 analysis was performed on K562 cells, and variants; ABCB1 overexpressing K562-DOX and ABCG2 overexpressing K562-ABCG2. As shown in Table 1, in contrast to the results previously observed with imatinib (IM), nilotinib (NIL) and dasatinib (DAS) there was no significant difference in the IC50ponatinib between these three cell lines, suggesting neither ABCB1 nor ABCG2 play a major role in ponatinib transport. Furthermore, the addition of either the ABCB1 and ABCG2 inhibitor pantoprazole, or the multidrug resistance (MDR) inhibitor cyclosporin did not result in a significant change in the IC50ponatinib in any of the cell lines tested. In contrast the addition of either pantoprazole or cyclosporin resulted in a significant reduction in IC50IM, IC50NIL. and IC50DAS of K562-DOX cells, supporting the notion that these TKIs interact with ABCB1.Table 1:The IC50 of ponatinib (compared to IM, NIL and DAS) in K562 cells and the over-expressing variants DOX and ABCG2 in the presence of the ABC inhibitors pantoprazole and cyclosporin. n=5. *p<0.05IC50% reduction in IC50+ pantoprazole+ cyclosporinPON (nM)IM (μM)NIL (nM)DAS (nM)PONIMNILDASPONIMNILDASK5627.793751111544*NA−107NA2DOX7.919*598*100*1018*63*1655*88*ABCG26.4730025*6NA To further examine the effect of ABC transporters on ponatinib efflux we have determined the IUR of [14-C]-ponatinib in K562, DOX and ABCG2 cell lines. We demonstrate no significant difference in the IUR between these cell lines at 37°C (n=6) (K562 vs DOX p=0.6; K562 vs ABCG2 p=0.37 and DOX vs ABCG2 p=0.667 at 2uM respectively). Temperature dependent IUR experiments reveal a significant reduction in the ponatinib IUR at 4°C compared to 37°C in K562 cells (n=6) (p=0.008), DOX cells (p=0.004) and ABCG2 cells (p=0.002) supporting the likely involvement of an ATP/temperature dependent, and yet to be determined, component of ponatinib influx. There was no significant difference in the IUR between these cell lines at 4°C (p=0.824, p=0.7 and p=0.803 respectively). Importantly, these data are consistent with the IC50ponatinib findings. If ATP dependent efflux pumps (ABCB1 and ABCG2) were actively transporting ponatinib, a significant decrease in IUR in DOX and ABCG2 at 37°C compared to K562 cells would be expected, but is not observed here. Analysis of ponatinib IUR in the prototypic ABCB1 over-expressing CEM-VBL100 cells, and their parental, ABCB1 null counterparts (CCRF-CEM) further confirmed these findings. The IUR in VBL100 cells was significantly higher than that observed in CEM's (p<0.001; n=5), providing further evidence that ponatinib was not being exported from the cell actively via ABCB1. These data suggest that the transport of ponatinib is, at least in part, temperature-dependent indicating a yet to be determined ATP transporter may be involved in the transport of ponatinib into leukaemic cells. Importantly, this data suggests that ponatinib is unlikely to be susceptible to resistance via the major ATP efflux transporters (ABCB1 or ABCG2) that have been previously demonstrated to significantly impact the transport of, and mediate resistance to other clinically available TKIs. Disclosures: White: BMS: Honoraria, Research Funding; Novartis Pharmaceuticals: Honoraria, Research Funding. Clackson:ARIAD: Employment. Hughes:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; ARIAD: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1470-1470
Author(s):  
Jueqiong Wang ◽  
Chung Hoow Kok ◽  
Richard J. D'Andrea ◽  
Timothy P. Hughes ◽  
Deborah L. White

Abstract Introduction The human organic cation transporter-1 (hOCT-1) is the primary active influx protein for imatinib in BCR-ABL positive cells. The functional activity of the OCT-1 protein (OCT-1 activity, OA) is predictive of molecular response in de-novo chronic phase chronic myeloid leukemia (CP-CML) patients. We have previously demonstrated that diclofenac, a competitive peroxisome proliferator-activated receptor-γ (PPARγ) antagonist, can significantly increase OA in CML cells 1. However, the role of PPARγ and its ligands in OA regulation remain unknown. Thus, the link between OA and PPARγ in CML cells has been investigated in this study. Methods OA was determined by intracellular uptake and retention assay (IUR) in the presence and absence of the OCT-1 inhibitor, prazosin 2. To assess the effect of PPARγ ligands on OA, BCR-ABL positive cell lines (KU812, K562) were incubated with PPARγ antagonist (GW9662, T0070907) or agonists (GW1929, rosiglitazone) respectively for 1 hour immediately prior to the IUR assays. The OA was also assessed in the mononuclear cells (MNCs) of 77 CP-CML patients enrolled to the TIDEL II trial. PPARγ activity in CML MNC nuclear extracts was determined through the use of a PPARγ Transcription Factor Assay Kits according to the manufacturer's instructions. To assess the effect of PPARγ ligands on cell death, KU812 or K562 cells were stained with AnnexinV and 7-AAD for detection of apoptosis after the co-administration of imatinib and PPARγ ligands for 72 hours. Results A significant increase in OA was observed in KU812 and K562 cells treated with PPARγ antagonists. In contrast, PPARγ agonists significantly decreased the OA in both cell lines (Table 1). A negative link between OA and PPARγ activity was observed in CML MNC samples (R=-0.585, p<0.001). PPARγ activity was significantly elevated in CML patients who had a low OA at diagnosis (less than 4 ng/200,000 cells) compared with those who had higher OA (p<0.001). After 72 hours co-administration with 0.1µM imatinib, KU812 cells treated with PPARγ antagonists (GW9662 and T0070907) showed a significantly lower cell viability (40% and 18% respectively) compared with vehicle control (70%, p<0.001). Similar results were also observed in K562 cells after co-administration with 1.0µM imatinib for 72 hours. K562 cells treated with PPARγ antagonists (GW9662: 51% and T0070907: 47%) showed a significantly lower cell viability (51% and 47% respectively) compared with vehicle control (61%, p<0.05). Conclusion Ligand-activation or inhibition of PPARγ is a regulator of OA in CML cell lines, and the low MNC OCT-1 activity in CML patients is consistent with the high level of PPARγ activity in these cells. Low PPARγ activity may be the key driver for low OA and poor imatinib response observed in a subset of CML patients. Importantly, the enhanced OA as a result of PPARγ antagonist treatment resulted in increased cell death following co-administration with imatinib. Ongoing studies relating to the upstream pathways involved in PPARγ activation aim to reveal the possible mechanism of OA modulation by PPARγ. Enhancement of OA by PPARg antagonists is likely to provide an important axis for clinical application to improve the clinical efficacy of imatinib. This would be particularly important in patients with low OA who currently have inferior outcomes with imatinib therapy. 1. Wang J, Hughes TP, Kok CH, et al. Contrasting effects of diclofenac and ibuprofen on active imatinib uptake into leukaemic cells. British Journal of Cancer. 2012;106(11):1772-1778. 2. White DL, Saunders VA, Dang P, et al. Most CML patients who have a suboptimal response to imatinib have low OCT-1 activity: Higher doses of imatinib may overcome the negative impact of low OCT-1 activity. Blood. 2007;110(12):4064-4072. Disclosures: Hughes: Novartis: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Ariad: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; CSL: Research Funding. White:Novartis: Research Funding; BMS: Research Funding, Speakers Bureau; Ariad: Research Funding; CSL: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4344-4344
Author(s):  
Jay Gamma ◽  
Aishwarya Iyer ◽  
Megan Yap ◽  
Zoulika Zak ◽  
Krista Vincent ◽  
...  

Abstract Background: N-terminal myristoylation is the transfer of the saturated fourteen carbon fatty acid myristate to an N-terminal glycine residue. This co- or post-translational protein modification promotes protein-protein and protein-lipid interactions and is essential for proper membrane localization and/or activity of up to 600 human intracellular proteins. N-myristoyltransferases (NMTs) are the enzymes responsible and two isoforms are found in humans. NMT1 (ubiquitous and essential for cell survival) and NMT2 (more variably expressed) differ in activity level and substrate specificities. NMT expression levels vary in some cancers, and with myristoylation being essential for activity of certain oncogenes including Src Family Kinases (SFKs). NMTs have therefore been proposed as an anti-cancer target. Dysregulation and oncogenic activity of SFKs occurs frequently in acute myeloid leukemia (AML), suggesting NMT inhibition could provide therapeutic benefit. PCLX-001 is a low nanomolar small molecule pan-NMT inhibitor with high oral bioavailability in clinical trials as once daily oral therapy for lymphoma and solid tumors. Methods and Results: Data from the TCGA Transcriptome database showed high NMT1 and low NMT2 were associated with reduced overall and event-free survival in adult AML, and high NMT1 - but not NMT2 - expression is associated with proliferative gene sets in AML cell lines. AML cell lines treated with PCLX-001 showed a significant reduction in total protein myristoylation, as well as reduced levels of SFK proteins and SFK phosphorylation. PCLX-001 induced apoptosis in AML cell lines and patient blasts at concentrations which spared a large proportion of peripheral blood lymphocytes and monocytes from healthy individuals. AML cell lines showed significant increase in BIP protein and ER stress in response to PCLX-001, along with caspase 3 cleavage. In an AML cell line derived xenograft (CDX) and two AML patient derived xenograft (PDX) series (n=1 DX for MV-4-11 and n=2 PDX), PCLX-001 monotherapy had dose-dependent anticancer activity and resulted in complete remissions in subcutaneous AML cell deposits. In tail-vein injection PDX models, PCLX-001 treatment resulted in up to 95% reduction of human CD45+ cells in peripheral blood and bone marrow. Conclusions: These findings validate NMT inhibition as a novel therapeutic strategy for AML. PCLX-001 preferentially targeted AML cells that rely on oncogenic activity of myristoylated proteins, inducing apoptosis and reducing leukemic burden. PCLX-001 warrants evaluation in clinical trials for adult AML. Disclosures Gamma: Pacylex Pharmaceuticals: Current holder of individual stocks in a privately-held company. Yap: Pacylex Pharmaceuticals: Current holder of individual stocks in a privately-held company, Patents & Royalties. Beauchamp: Pacylex Pharmaceuticals: Current Employment, Current holder of individual stocks in a privately-held company, Patents & Royalties. Mackey: Pacylex Pharmaceuticals, Inc.: Current holder of individual stocks in a privately-held company. Pemmaraju: Dan's House of Hope: Membership on an entity's Board of Directors or advisory committees; Abbvie Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees, Other, Research Funding; Aptitude Health: Consultancy; Sager Strong Foundation: Other; Celgene Corporation: Consultancy; LFB Biotechnologies: Consultancy; Plexxicon: Other, Research Funding; MustangBio: Consultancy, Other; Roche Diagnostics: Consultancy; Daiichi Sankyo, Inc.: Other, Research Funding; DAVA Oncology: Consultancy; Cellectis S.A. ADR: Other, Research Funding; Springer Science + Business Media: Other; Stemline Therapeutics, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees, Other, Research Funding; HemOnc Times/Oncology Times: Membership on an entity's Board of Directors or advisory committees; ASCO Leukemia Advisory Panel: Membership on an entity's Board of Directors or advisory committees; Samus: Other, Research Funding; ASH Communications Committee: Membership on an entity's Board of Directors or advisory committees; CareDx, Inc.: Consultancy; Novartis Pharmaceuticals: Consultancy, Other: Research Support, Research Funding; Incyte: Consultancy; Affymetrix: Consultancy, Research Funding; Protagonist Therapeutics, Inc.: Consultancy; Clearview Healthcare Partners: Consultancy; Blueprint Medicines: Consultancy; Bristol-Myers Squibb Co.: Consultancy; ImmunoGen, Inc: Consultancy; Pacylex Pharmaceuticals: Consultancy. Borthakur: Astex: Research Funding; Ryvu: Research Funding; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Protagonist: Consultancy; ArgenX: Membership on an entity's Board of Directors or advisory committees; University of Texas MD Anderson Cancer Center: Current Employment; Takeda: Membership on an entity's Board of Directors or advisory committees; GSK: Consultancy. Brandwein: AbbVie: Honoraria; Jazz: Honoraria; Taiho: Honoraria; Astellas: Honoraria; Bristol Myers Squibb: Honoraria; Roche: Honoraria; Pfizer: Honoraria; Amgen: Honoraria. Berthiaume: Pacylex Pharmaceuticals, Inc.: Current holder of individual stocks in a privately-held company.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2923-2923
Author(s):  
Idaly Maria Olivas ◽  
Joshua Lara ◽  
Rebecca Ellwood ◽  
Carme Ripoll Fiol ◽  
Andres J Rubio ◽  
...  

Tyrosine kinase inhibitors (TKIs) targeting BCR-ABL1 are remarkably effective therapies in chronic myeloid leukemia (CML). Despite clinical success, TKIs do not target the CML leukemic stem cell (LSC), and the majority of patients must be treated for life to maintain remission. Our previous work has shown that BCR-ABL1-independent resistance is driven by STAT3 in CML stem/progenitor cells (Eiring et al. Leukemia 2015). Unexpectedly, RNA-sequencing on TKI-resistant K562 cells (K562-R) versus parental controls (K562-S) revealed that resistance is not associated with STAT3-mediated transcription, but is rather reminiscent of TNFa signaling via NF-κB (p=0.024). Nucleocytoplasmic fractionation confirmed these findings, demonstrating higher levels of phospho-NF-κB in the nucleus of CD34+ cells from TKI-resistant patients (n=3) compared to newly diagnosed CML patients (n=2) or normal individuals (n=2). Surprisingly, ELISA results revealed that K562-R cells do not produce autonomous TNFa, but they do produce IL-6 (p<0.01). These data suggest that NF-κB may be driving the gene expression signature of BCR-ABL1-independent resistance, and implicate non-canonical functions for STAT3. To better understand the mechanism by which NF-κB drives resistance, we correlated our RNA sequencing data with gene expression profiles of CML patients not responding to imatinib (McWeeney et al. Blood 2010), identifying 36 genes commonly dysregulated in both TKI-resistant cell lines and patient samples. Of the 30 upregulated genes, 21 had p65-NF-κB bound to their promoter regions via ChIP in hematopoietic cells (UCSC Genome Brower). Two of these genes are members of the ubiquitin proteasome system, including PSMD1 and PSMD3, both of which were implicated as hits in a previously published shRNA library screen for BCR-ABL1-independent resistance (Khorashad et al. Blood 2015). PSMD1 and PSMD3 are non-ATPase subunits of the 19S regulatory complex in the 26S proteasome, likely involved in proteasome substrate recognition and binding. In breast cancer, PSMD1 was shown to regulate cell growth by inducing p53 degradation (Okumura et al. 2018), whereas PSMD3 was shown to protect HER2 from degradation (Fararjeh et al. 2019). qRT-PCR confirmed upregulation of PSMD1 and PSMD3 by 3-fold and 6-fold, respectively, in K562-R cells versus parental controls in the presence of imatinib. Interestingly, according to data from The Cancer Genome Atlas (TGCA), higher levels of PSMD1 and PSMD3 mRNA correlates with a worse prognosis in acute myeloid leukemia (PSMD1, p=0.0138; PSMD3, p=0.0229). We hypothesized that PSMD1 and PSMD3 upregulation contributes to NF-κB activation and TKI resistance. We used doxycycline-inducible shRNAs to assess the function of PSMD1 and PSMD3 in CML cell survival and TKI response. Induction of knockdown (100 ng/mL doxycycline, 72h) resulted in a reduction of PSMD1 and PSMD3 mRNA and protein by ~73% and ~77%, respectively, in K562-R cells. Importantly, immunoblot analysis revealed that knockdown of either PSMD1 or PSMD3 in TKI-resistant K562-R cells resulted in a significant reduction of phospho-NF-κB (p65), suggesting that upregulation of these proteins promotes NF-κB activation. Reduced phospho-NF-κB (p65) correlated with phenotypic effects, including reduced colony formation, increased response to TKIs as assessed in MTS assays, and increased apoptosis in both the presence and absence of imatinib. Our results suggest that NF-κB activation in TKI resistance depends on the proteasome components, PSMD1 and PSMD3, forming a positive feedback loop potentiating NF-κB signaling. Our data also suggest that specific targeting of the ubiquitin proteasome system through either PSMD1 or PSMD3 may be a novel strategy to restore TKI sensitivity in patients with BCR-ABL1-independent TKI resistance. Future studies will address the non-canonical functions of STAT3 in TKI resistance. Disclosures Milojkovic: Novartis: Honoraria, Speakers Bureau; Incyte: Honoraria, Speakers Bureau; Pfizer: Honoraria, Speakers Bureau; BMS: Honoraria, Speakers Bureau. Apperley:Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Incyte: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.


Sign in / Sign up

Export Citation Format

Share Document