scholarly journals Evidence that eosinophils catalyze the bromide-dependent decarboxylation of amino acids

Blood ◽  
1981 ◽  
Vol 58 (6) ◽  
pp. 1112-1118 ◽  
Author(s):  
R Cramer ◽  
MR Soranzo ◽  
P Patriarca

Abstract Human eosinophils from subjects with or without myeloperoxidase (MPO) deficiency and guinea pig eosinophils are able to decarboxylate L- alanine in the presence of the cationic detergent cetyltrimethylammonium bromide (CTAB) but not in the presence of the nonionic detergent Triton X-100. Instead, both normal human neutrophils and guinea pig neutrophils decarboxylate L-alanine in the presence of either detergent. When the non-bromide-containing cationic detergent cetyltrimethylammonium hydroxide (CTAOH) is used instead of CTAB, the eosinophils from MPO-deficient subjects are unable to decarboxylate L- alanine. Decarboxylation occurs with the combination CTAOH-Br-, but not with the combinations CTAOH-I-, CTAOH-CI-, or CTAOH-F-. Bromide in the absence of CTAOH does not promote decarboxylation. Triton X-100 and deoxycholate are much less effective in promoting decarboxylation in the presence of bromide. L-Lysine and L-aspartic acid are decarboxylated to a considerably lower rate than L-alanine in the presence of CTAOH and Br-. It is concluded that the eosinophils can catalyze the bromide-dependent decarboxylation of the apolar amino acid L-alanine in the presence of a cationic detergent.

Blood ◽  
1981 ◽  
Vol 58 (6) ◽  
pp. 1112-1118
Author(s):  
R Cramer ◽  
MR Soranzo ◽  
P Patriarca

Human eosinophils from subjects with or without myeloperoxidase (MPO) deficiency and guinea pig eosinophils are able to decarboxylate L- alanine in the presence of the cationic detergent cetyltrimethylammonium bromide (CTAB) but not in the presence of the nonionic detergent Triton X-100. Instead, both normal human neutrophils and guinea pig neutrophils decarboxylate L-alanine in the presence of either detergent. When the non-bromide-containing cationic detergent cetyltrimethylammonium hydroxide (CTAOH) is used instead of CTAB, the eosinophils from MPO-deficient subjects are unable to decarboxylate L- alanine. Decarboxylation occurs with the combination CTAOH-Br-, but not with the combinations CTAOH-I-, CTAOH-CI-, or CTAOH-F-. Bromide in the absence of CTAOH does not promote decarboxylation. Triton X-100 and deoxycholate are much less effective in promoting decarboxylation in the presence of bromide. L-Lysine and L-aspartic acid are decarboxylated to a considerably lower rate than L-alanine in the presence of CTAOH and Br-. It is concluded that the eosinophils can catalyze the bromide-dependent decarboxylation of the apolar amino acid L-alanine in the presence of a cationic detergent.


1988 ◽  
Vol 8 (3) ◽  
pp. 1247-1252 ◽  
Author(s):  
E Lazar ◽  
S Watanabe ◽  
S Dalton ◽  
M B Sporn

To study the relationship between the primary structure of transforming growth factor alpha (TGF-alpha) and some of its functional properties (competition with epidermal growth factor (EGF) for binding to the EGF receptor and induction of anchorage-independent growth), we introduced single amino acid mutations into the sequence for the fully processed, 50-amino-acid human TGF-alpha. The wild-type and mutant proteins were expressed in a vector by using a yeast alpha mating pheromone promoter. Mutations of two amino acids that are conserved in the family of the EGF-like peptides and are located in the carboxy-terminal part of TGF-alpha resulted in different biological effects. When aspartic acid 47 was mutated to alanine or asparagine, biological activity was retained; in contrast, substitutions of this residue with serine or glutamic acid generated mutants with reduced binding and colony-forming capacities. When leucine 48 was mutated to alanine, a complete loss of binding and colony-forming abilities resulted; mutation of leucine 48 to isoleucine or methionine resulted in very low activities. Our data suggest that these two adjacent conserved amino acids in positions 47 and 48 play different roles in defining the structure and/or biological activity of TGF-alpha and that the carboxy terminus of TGF-alpha is involved in interactions with cellular TGF-alpha receptors. The side chain of leucine 48 appears to be crucial either indirectly in determining the biologically active conformation of TGF-alpha or directly in the molecular recognition of TGF-alpha by its receptor.


1986 ◽  
Vol 164 (5) ◽  
pp. 1407-1421 ◽  
Author(s):  
J E Gabay ◽  
J M Heiple ◽  
Z A Cohn ◽  
C F Nathan

We examined the subcellular location of bactericidal factors (BF) in human neutrophils, using an efficient fractionation scheme. Nitrogen bomb cavitates of DIFP-treated PMN were centrifuged through discontinuous Percoll gradients, each fraction extracted with 0.05 M glycine, pH 2.0, and tested for the killing of Escherichia coli. greater than 90% of BF coisolated with the azurophil granules. After lysis of azurophils, 98% of azurophil-derived BF (ADBF) sedimented with the membrane. ADBF activity was solubilized from azurophil membrane with either acid or nonionic detergent (Triton X-100, Triton X-114). Bactericidal activity was linear with respect to protein concentration over the range 0.3-30 micrograms/ml. 0.1-0.3 microgram/ml ADBF killed 10(5) E. coli within 30 min at 37 degrees C. At 1.4 micrograms/ml, 50% of 2 X 10(5) bacteria were killed within 5 min. ADBF was effective between pH 5-8, with peak activity at pH 5.5. Glucose (20 mM), EDTA (1-25 mM), and physiologic concentrations of NaCl or KCl had little or no inhibitory effect on ADBF. ADBF killed both Gram-positive and Gram-negative virulent clinical isolates, including listeria, staphylococci, beta-hemolytic streptococci, and Pseudomonas aeruginosa. Thus, under these conditions of cell disruption, fractionation, extraction, and assay, almost all BF in human PMN appeared to be localized to the membrane of azurophilic granules as a highly potent, broad-spectrum, rapidly acting protein(s) effective in physiologic medium. Some of these properties appear to distinguish ADBF from previously described PMN bactericidal proteins.


2019 ◽  
Vol 17 (1) ◽  
pp. 313-324 ◽  
Author(s):  
Marta Pikosz ◽  
Joanna Czerwik-Marcinkowska ◽  
Beata Messyasz

AbstractFilamentous green algae (FGA) frequently forms dense mats which can be either mono- or polyspecies. While various defense mechanisms of competition in algae are known, little is known about the interactions between different species of FGA. An experiment in controlled laboratory conditions was conducted to gather data on the changes in amino acids (AA) concentrations in FGA species in the presence of exudates from different other species. The aim of the present study was to identify the AA whose concentrations showed significant changes and to assess if the changes could be adaptation to stress conditions. The major constituents of the AA pool in Cladophora glomerata, C. fracta and Rhizoclonium sp. were Glutamic acid (Glu), Aspartic acid (Asp) and Leucine (Leu). In response to chemical stress, that is the increasing presence of exudates, a significant increase in the concentrations Proline (Pro) and Tryptophan (Trp) was noted. The increase in Proline levels was observed in C. fracta and Rhizoclonium in response to chemical stress induced by C. glomerata exudates. As the concentration of exudates increased in the medium, there was a progressive shift in the pattern of AA group in FGA.


1985 ◽  
Vol 40 (7-8) ◽  
pp. 527-530
Author(s):  
Günter Döhler ◽  
Joachim Zink

Abstract The marine diatoms Bellerochea yucatanensis and Thalassiosira rotula were grown at different salinities (20/25, 35, and 40/45‰ salinity (S), respectively) under normal air (0.035 vol.% CO2). No significant variations in the percentage of gross photosynthetic products (e.g. total amino acids, sugar phosphates) were found as a function of salinity during growth. The bulk of the soluble 14C-radioactivity was detected in amino acids. 14C-labelling of glutamine increased markedly with salinity. Low salt - grown algae are characterized by enhanced amino acid pools, mainly of aspartic acid, asparagine and glutamine. It was found that the tested amino acids are not involved in osmoregulation.


1981 ◽  
Vol 241 (3) ◽  
pp. C106-C112 ◽  
Author(s):  
B. M. Eaton ◽  
D. L. Yudilevich

Unidirectional uptake of eighteen amino acids into the syncytiotrophoblast was measured from both the maternal and fetal circulations of isolated dually perfused guinea pig placentas using a single-circulation, paired-tracer dilution technique. A bolus containing a tritiated amino acid and L-[14C]glucose (extracellular marker) was injected intra-arterially into one circulation, and both venous outflows were sequentially sampled. The maximal cellular uptake (Umax) on the injection side was determined from (1-[3H]/[14C]) values and used to calculate the unidirectional influx. Umax values for neutral and basic amino acids ranged between 15 and 58% and were similar on both sides of the trophoblast. Uptake of the acidic amino acids and taurine was minimal. Amino acid influx from either circulation was followed by rapid tracer backflux and transplacental transfer. Tracer efflux was asymmetric and preferentially directed towards the fetal side. It is suggested that amino acid transport systems are present on both surfaces of the placenta and that net transfer from mother to fetus is the result of asymmetric efflux from the trophoblast.


2016 ◽  
Vol 3 (12) ◽  
pp. 1699-1704 ◽  
Author(s):  
Nicola Zanna ◽  
Andrea Merlettini ◽  
Claudia Tomasini

Nine amino acids with different chemical properties have been chosen to promote the formation of hydrogels based on the bolamphiphilic gelator A: three basic amino acids (arginine, histidine and lysine), one acidic amino acid (aspartic acid), two neutral aliphatic amino acids (alanine and serine) and three neutral aromatic amino acids (phenylalanine, tyrosine and tryptophan).


1962 ◽  
Vol 40 (1) ◽  
pp. 983-987 ◽  
Author(s):  
Felix Friedberg

Apoferritin isolated from livers of guinea pigs and characterized by a s°w,20 of 17.7 and a pI of 4.8 (in acetate buffer Γ/2 0.1) was hydrolyzed with 5.7 N HCl for 22 and 44 hours and its amino acid composition determined. The protein appears rich in dicarboxylic acids and in leucine. The content of sulphur-containing amino acids is fairly small.


Author(s):  
B. Lemieux ◽  
A. Barbeau ◽  
V. Beroniade ◽  
D. Shapcott ◽  
G. Breton ◽  
...  

SUMMARY:A study of amino acids determined by sequential Multi-sample Amino Acid Automatic Analyzer in plasma, urine and cerebrospinal fluid (CSF) in patients with Friedreich's ataxia and control subjects has revealed a number of mathematically significant variations from normal. Of practical physiological importance are the following: a high urinary excretion of alanine with slightly elevated plasma levels; a low plasma and CSF concentration of aspartic acid in the resence of normal urinary values and finally a low CSF concentration of taurine accompanied by normal plasma levels, but elevated urinary output and renal clearance rates. We postulate that the modifications in alanine and aspartic acid are less specific and probably secondary, but there could be a genetic defect in the membrane transport of taurine and the other β-amino acids in Friedreich's ataxia.


1972 ◽  
Vol 50 (7) ◽  
pp. 813-829 ◽  
Author(s):  
J. C. Forest ◽  
F. Wightman

The development of aromatic aminotransferase activity was examined in cotyledons, roots, and shoots of bushbean seedlings growing under light or dark conditions for the first 2 weeks after germination. All three aromatic amino acid – α-ketoglutarate aminotransferase activities were found to have similar patterns of development in comparable organs grown under the two environmental conditions, and the changes in levels of activity appeared unrelated to variations in the endogenous amounts of free aromatic amino acids in the organs of these seedlings. The highest total activity for all three transamination reactions was found in the shoots of light-grown seedlings after 14 days, whereas the aminotransferases showing highest specific activity were found in roots of both kinds of seedlings after 8 days of growth. The intracellular distribution of the three aromatic aminotransferase activities and of aspartate aminotransferase activity was investigated by differential centrifugation of root homogenates. Only a total of 10% of these two activities was found in the two particulate fractions; the soluble protein in the final supernatant fraction accounted for almost 90% of the total aromatic and aspartate aminotransferase activities.The aromatic aminotransferase in the soluble protein fraction from seedling roots was purified about 600-fold by pH precipitation, ammonium sulfate fractionation, and Sephadex chromatography, and the recovery obtained was 30–35% based on total activity. It was observed that the specific activity for aspartate–α-ketoglutarate aminotransferase increased proportionally to the increase in aromatic aminotransferase activities during the different steps of purification. Gel electrophoresis of the purified fraction revealed only one protein band which corresponded to the product-specific stained band for the three aromatic aminotransferase activities assayed on other gels. The molecular weight of the purified aminotransferase was found to be about 128 000 daltons and its Stokes radius was calculated to be 43 ± 3 Å. The pH optima for the three aromatic aminotransferase activities and for aspartate aminotransferase activity were all found to be 8.5. The purified enzyme showed no specific requirement for pyridoxal phosphate and an examination of its amino acid substrate specificity revealed that it was able to catalyze transamination of L-aspartic acid, L-phenylalanine, L-tyrosine, and L-tryptophan when α-ketoglutarate was provided as amino group acceptor. The enzyme was also found to catalyze transamination of L-glutamic acid when oxaloacetate was used as amino group acceptor, but neither pyruvate nor glyoxylate were utilized as amino acceptors for transamination of any of the amino acids examined. The enzyme was found to catalyze transamination of aspartic acid with much greater velocity than its rate of reaction with any of the three aromatic amino acids, and the inclusion of aspartic acid in a reaction medium at equimolar concentration with any one of the three aromatic amino acids resulted in strong inhibition of the aromatic aminotransferase activity of the enzyme. All the evidence indicates that the soluble protein fraction purified from bushbean roots contained only one aminotransferase which was able to catalyze the transamination of five L-amino acids. The demonstration of the substrate multispeciftcity of this pure enzyme represents the first evidence for a multispecific aminotransferase in plants.


Sign in / Sign up

Export Citation Format

Share Document