scholarly journals Two distinct categories of warm autoantibody reactivity with age- fractionated red cells

Blood ◽  
1984 ◽  
Vol 63 (1) ◽  
pp. 177-180 ◽  
Author(s):  
DR Branch ◽  
IA Shulman ◽  
AL Sy Siok Hian ◽  
LD Petz

Abstract Using age-fractionated erythrocytes, warm autoantibodies can be classified into two distinct categories, depending on their reactivity with reticulocyte-enriched (younger) or reticulocyte-poor (older) red cell fractions. The strength of the direct antiglobulin test (DAT) on the age-fractionated red cells of 24 patients indicated that 19 (79%) had an IgG warm autoantibody that reacted preferentially with older red blood cells. In 7 of these 19 patients (37%), the DAT was negative using reticulocyte-enriched red cell fractions. We have termed this preferential reactivity of warm autoantibodies with older red cells as type I. Five of the 24 patients studied (21%) had an IgG warm autoantibody that demonstrated no preference for young or older red cells. We have termed this pattern of warm autoantibody reactivity as type II. All 5 patients having type II warm autoantibodies had severe anemia. In contrast, 6 of 19 patients having type I warm autoantibody did not have clinical evidence of anemia when tested, and 11 of the 19 had only slight to moderate anemia. Additionally, our results using type I warm autoantibody raise questions regarding the blood group specificity of warm autoantibodies. The antigen recognized by type I warm autoantibody may be a cryptantigen. Rh specificity or relative Rh specificity, often associated with warm autoantibodies, may simply be a coincidental finding.

Blood ◽  
1984 ◽  
Vol 63 (1) ◽  
pp. 177-180
Author(s):  
DR Branch ◽  
IA Shulman ◽  
AL Sy Siok Hian ◽  
LD Petz

Using age-fractionated erythrocytes, warm autoantibodies can be classified into two distinct categories, depending on their reactivity with reticulocyte-enriched (younger) or reticulocyte-poor (older) red cell fractions. The strength of the direct antiglobulin test (DAT) on the age-fractionated red cells of 24 patients indicated that 19 (79%) had an IgG warm autoantibody that reacted preferentially with older red blood cells. In 7 of these 19 patients (37%), the DAT was negative using reticulocyte-enriched red cell fractions. We have termed this preferential reactivity of warm autoantibodies with older red cells as type I. Five of the 24 patients studied (21%) had an IgG warm autoantibody that demonstrated no preference for young or older red cells. We have termed this pattern of warm autoantibody reactivity as type II. All 5 patients having type II warm autoantibodies had severe anemia. In contrast, 6 of 19 patients having type I warm autoantibody did not have clinical evidence of anemia when tested, and 11 of the 19 had only slight to moderate anemia. Additionally, our results using type I warm autoantibody raise questions regarding the blood group specificity of warm autoantibodies. The antigen recognized by type I warm autoantibody may be a cryptantigen. Rh specificity or relative Rh specificity, often associated with warm autoantibodies, may simply be a coincidental finding.


Author(s):  
George Hug ◽  
K. Y. Wong ◽  
Beatrice Lampkin

Congenital dyserythropoietic anemia (CDA) as described in 1966 was characterized by (i) erythroblastic multinuclearity and (ii) lysis of the patient's red cells in acidified compatible normal human serum. This condition has since been labeled CDA Type II to distinguish it from a similar entity, CDA Type I, with erythroblastic multinuclearity but without red cell lysis in acidified human serum. According to this classification, our initial study of bone marrow ultrastructure in CDA concerned a girl with Type II. Her bone marrow contained erythroid cells with excessive cytoplasmic membranes and multiple nuclei. The present report illustrates this observation. The patient was a 12 year old white girl with congenital anemia and benign recurrent jaundice. Hemolysis was not present since Cr51 red cell survival time was normal. Bone marrow aspirates (Figure 1, 2 and 4) circulating red cells (Figure 3) and hepatic biopsy specimens were examined. The markers indicate 0.5 microns and N designates nucleus. The myeloid series was normal. Figure 1 shows a representative polychromatophilic normoblast.


Author(s):  
Arumugam P. ◽  
Swathandran Hamsavardhini ◽  
Ravishankar J.

Background: ABO discrepancies occur whenever the results of red cell grouping and serum grouping are in disagreement. The reasons for discrepancies both clinical and technical have to be sorted out. Further analysis is essential to resolve such discrepancies. If discrepancies are encountered, the interpretation of the ABO grouping has to be delayed until the same has been resolved. The aim of the study was to resolve ABO discrepancies encountered, by serological work up.Methods: All cases of discrepant samples received between August 2014 and May 2016 at the Department of Transfusion Medicine, The Tamilnadu Dr. MGR Medical University, Chennai, India were analyzed to determine the etiology by serological workup.Results: A total of twenty-one samples were analyzed and resolved. Fifteen cases of Type IV discrepancy, two cases of Type II discrepancy, one case Type III discrepancy, one case Type I discrepancy and two cases of technical errors were identified.Conclusions: ABO discrepancies can be resolved serologically if properly worked up. As ABO blood grouping is indispensible in blood transfusion service, it is imperative to resolve such discrepancies before transfusion.


Blood ◽  
1982 ◽  
Vol 59 (5) ◽  
pp. 986-989 ◽  
Author(s):  
MJ Dewey ◽  
JL Brown ◽  
FS Nallaseth

Abstract Mice of strain DBA/2J were found to produce red cells considerably more resistant to osmotic lysis than cells from C57BL/6J or the F1 hybrid between the two strains. Such strain-specific differences in osmotic fragility could be the result of genetically determined humoral or other systemic differences that indirectly influence red cell properties. Alternatively, this phenotypic variation might be an inherent property of the erythrocyte themselves and be directly controlled by their genotype. Analysis of red cells from allophenic (mosaic) mice of the strain composition C57BL/6J in equilibrium DBA/2J demonstrated that the latter possibility is the case. In such mice, erythrocytes of the DBA/2J genotype are relatively more resistant to osmotic lysis than are those of the C57BL/6J genotype; partial lysis of allophenic blood at intermediate salt concentrations results in marked enrichment for DBA/2J cells among the survivors. Future experiments designed to determine the mechanism underlying this difference can now focus on the properties of the red blood cells per se with the certainty that this property is inherent to the genotype of each cell.


1926 ◽  
Vol 43 (1) ◽  
pp. 111-106
Author(s):  
Hobart A. Reimann ◽  
Louis A. Julianelle

A study has been made of the variation in number of the blood platelets, and the red and white blood cells of white mice injected with pneumococcus extract. The blood platelets were greatly diminished after the injection, the greatest decrease usually occurring after 24 hours. Purpuric lesions usually developed when the number of blood platelets became less than 500,000 per c.mm. Regeneration of the platelets was accomplished by the 4th to the 9th day but there was an overregeneration and the return to normal did not take place until 2 weeks had elapsed. The red cells were also greatly reduced in number, but the rate of their destruction and regeneration was somewhat slower than that of the platelets. The leucocytes were slightly if at all influenced by the pneumococcus extract. Pneumococcus extracts were shown to be thrombolytic and hemolytic. Heat destroyed the activity of both the lysins in vitro. Heated extract produced purpura in mice but did not cause a severe anemia. Extracts adsorbed with either blood platelets or red blood cells showed a marked diminution in their thrombolytic and hemolytic activity in vitro. Such extracts, however, produced purpura as well as severe anemia and thrombopenia in mice.


Blood ◽  
1959 ◽  
Vol 14 (4) ◽  
pp. 399-408 ◽  
Author(s):  
WILLIAM H. CROSBY

Abstract During all the stages of a red cell’s life the normal spleen exerts a normal function. Eight of these functions have been considered: (1) erythropoiesis; (2) an effect upon red cell production; (3) an effect upon maturation of the red cell surface; (4) the reservoir function; (5) the "culling function"; (6) iron turnover and storage; (7) the "pitting function"; (8) destruction of old red cells.


2010 ◽  
Vol 2 (01) ◽  
pp. 017-020 ◽  
Author(s):  
Vanamala Alwar ◽  
Shanthala Devi A M. ◽  
Sitalakshmi S. ◽  
Karuna R K.

ABSTRACT Background: Autoimmune hemolytic anemia (AIHA) results from red cell destruction due to circulating autoantibodies against red cell membrane antigens. They are classified etiologically into primary and secondary AIHAs. A positive direct antiglobulin test (DAT) is the hallmark of diagnosis for AIHA. Methods and Results: One hundred and seventy-five AIHA cases diagnosed based on positive DAT were included in the study. The cases showed a female predilection (M: F = 1:2.2) and a peak incidence in the third decade. Forty cases were found to be due to primary AIHA, while a majority (n = 135) had AIHA secondary to other causes. The primary AIHA cases had severe anemia at presentation (65%) and more often showed a blood picture indicative of hemolysis (48%). Forty-five percent of primary AIHAs showed positivity for both DAT and indirect antiglobulin test (IAT). Connective tissue disorders were the most common associated etiology in secondary AIHA (n = 63). Conclusion: AIHAs have a female predilection and commonly present with symptoms of anemia. AIHA secondary to other diseases (especially connective tissue disorders) is more common. Primary AIHAs presented with severe anemia and laboratory evidence of marked hemolysis.


1989 ◽  
Vol 203 ◽  
pp. 381-400 ◽  
Author(s):  
D. Halpern ◽  
T. W. Secomb

An analysis is presented of the mechanics of red blood cells flowing in very narrow tubes. Mammalian red cells are highly flexible, but their deformations satisfy two significant constraints. They must deform at constant volume, because the contents of the cell are incompressible, and also at nearly constant surface area, because the red cell membrane strongly resists dilation. Consequently, there exists a minimal tube diameter below which passage of intact cells is not possible. A cell in a tube with this diameter has its critical shape: a cylinder with hemispherical ends. Here, flow of red cells in tubes with near-minimal diameters is analysed using lubrication theory. When the tube diameter is slightly larger than the minimal value, the cell shape is close to its shape in the critical case. However, the rear end of the cell becomes flattened and then concave with a relatively small further increase in the diameter. The changes in cell shape and the resulting rheological parameters are analysed using matched asymptotic expansions for the high-velocity limit and using numerical solutions. Predictions of rheological parameters are also obtained using the assumption that the cell is effectively rigid with its critical shape, yielding very similar results. A rapid decrease in the apparent viscosity of red cell suspensions with increasing tube diameter is predicted over the range of diameters considered. The red cell velocity is found to exceed the mean bulk velocity by an amount that increases with increasing tube diameter.


Blood ◽  
2015 ◽  
Vol 125 (19) ◽  
pp. 2893-2897 ◽  
Author(s):  
Tamara Korolnek ◽  
Iqbal Hamza

Abstract Macrophages play a critical role in iron homeostasis via their intimate association with developing and dying red cells. Central nurse macrophages promote erythropoiesis in the erythroblastic island niche. These macrophages make physical contact with erythroblasts, enabling signaling and the transfer of growth factors and possibly nutrients to the cells in their care. Human mature red cells have a lifespan of 120 days before they become senescent and again come into contact with macrophages. Phagocytosis of red blood cells is the main source of iron flux in the body, because heme must be recycled from approximately 270 billion hemoglobin molecules in each red cell, and roughly 2 million senescent red cells are recycled each second. Here we will review pathways for iron trafficking found at the macrophage-erythroid axis, with a focus on possible roles for the transport of heme in toto.


Sign in / Sign up

Export Citation Format

Share Document