scholarly journals Aphidicolin, an inhibitor of DNA replication, blocks the TPA-induced differentiation of a human megakaryoblastic cell line, MEG-O1

Blood ◽  
1991 ◽  
Vol 78 (12) ◽  
pp. 3168-3177 ◽  
Author(s):  
T Murate ◽  
T Hotta ◽  
K Tsushita ◽  
M Suzuki ◽  
T Yoshida ◽  
...  

The commitment process of a human megakaryoblastic cell line (MEG-O1) induced with phorbol ester, TPA, was investigated with special reference to glycoprotein (GP) IIb/IIIa expression, multinuclear formation, and DNA replication. TPA (10(-7) mol/L) completely inhibited cellular division in MEG-O1, but did not suppress de novo DNA synthesis. Two days' culture with 10(-7) mol/L TPA was sufficient for MEG-O1 cells to initiate an irreversible commitment process. These cells could not resume cell growth and expressed GP IIb/IIIa antigen; some of them showed multinuclear form and DNA polyploidy even after removal of TPA from the culture medium. DNA histogram analysis showed that, upon treatment with TPA, the percentage of cells whose DNA ploidy was more than 8N was 5 to 10 times higher than that of control cells. Precise analysis using cell size fractionation by centrifugal elutriation method showed that there was strong correlation between the percentage of multinuclear cells and DNA polyploidy in TPA-treated cells. The percentage and staining intensity of GP IIb/IIIa and other megakaryocytic phenotypes such as von Willebrand factor and PAS staining were highest in large multinuclear cell populations, suggesting that these cells are the most differentiated population in this system. In TPA-treated cells, the activity of DNA polymerase alpha, a marker for cell growth, remained at the same level as in control cells. Aphidicolin, a specific inhibitor of DNA polymerase alpha, completely inhibited the differentiation induction of MEG-O1 cells with TPA measured by either GP IIb/IIIa expression or multinuclear cell formation. Therefore, DNA replication appears to be involved in the process of phenotypic expression as well as endomitosis in megakaryocyte differentiation of MEG-O1 cells. Aphidicolin was also effective in inhibiting megakaryocytic differentiation of other leukemia cell lines such as human erythroleukemia (HEL) and K562 cell lines induced with TPA, suggesting the close interplay of DNA replication and phenotypic expression in megakaryopoiesis.

Blood ◽  
1991 ◽  
Vol 78 (12) ◽  
pp. 3168-3177 ◽  
Author(s):  
T Murate ◽  
T Hotta ◽  
K Tsushita ◽  
M Suzuki ◽  
T Yoshida ◽  
...  

Abstract The commitment process of a human megakaryoblastic cell line (MEG-O1) induced with phorbol ester, TPA, was investigated with special reference to glycoprotein (GP) IIb/IIIa expression, multinuclear formation, and DNA replication. TPA (10(-7) mol/L) completely inhibited cellular division in MEG-O1, but did not suppress de novo DNA synthesis. Two days' culture with 10(-7) mol/L TPA was sufficient for MEG-O1 cells to initiate an irreversible commitment process. These cells could not resume cell growth and expressed GP IIb/IIIa antigen; some of them showed multinuclear form and DNA polyploidy even after removal of TPA from the culture medium. DNA histogram analysis showed that, upon treatment with TPA, the percentage of cells whose DNA ploidy was more than 8N was 5 to 10 times higher than that of control cells. Precise analysis using cell size fractionation by centrifugal elutriation method showed that there was strong correlation between the percentage of multinuclear cells and DNA polyploidy in TPA-treated cells. The percentage and staining intensity of GP IIb/IIIa and other megakaryocytic phenotypes such as von Willebrand factor and PAS staining were highest in large multinuclear cell populations, suggesting that these cells are the most differentiated population in this system. In TPA-treated cells, the activity of DNA polymerase alpha, a marker for cell growth, remained at the same level as in control cells. Aphidicolin, a specific inhibitor of DNA polymerase alpha, completely inhibited the differentiation induction of MEG-O1 cells with TPA measured by either GP IIb/IIIa expression or multinuclear cell formation. Therefore, DNA replication appears to be involved in the process of phenotypic expression as well as endomitosis in megakaryocyte differentiation of MEG-O1 cells. Aphidicolin was also effective in inhibiting megakaryocytic differentiation of other leukemia cell lines such as human erythroleukemia (HEL) and K562 cell lines induced with TPA, suggesting the close interplay of DNA replication and phenotypic expression in megakaryopoiesis.


1988 ◽  
Vol 107 (6) ◽  
pp. 2009-2019 ◽  
Author(s):  
J W Raff ◽  
D M Glover

We have microinjected aphidicolin, a specific inhibitor of DNA polymerase alpha, into syncytial Drosophila embryos. This treatment inhibits DNA synthesis and, as a consequence, nuclear replication. We demonstrate that under these conditions several cycles of both centrosome replication and cortical budding continue, although the cycles have a longer periodicity than is normally found. As in uninjected embryos, when the cortical buds are present, the embryos have nuclei containing decondensed chromatin surrounded by nuclear membranes as judged by bright annular staining with an anti-lamin antibody. As the buds recede, the unreplicated chromatin condenses and lamin staining becomes weak and diffuse. Thus, both cytoplasmic and nuclear aspects of the mitotic cycle continue following the inhibition of DNA replication in the Drosophila embryo.


Author(s):  
Putthiporn Khongkaew ◽  
Phanphen Wattanaarsakit ◽  
Konstantinos I. Papadopoulos ◽  
Watcharaphong Chaemsawang

Background: Cancer is a noncommunicable disease with increasing incidence and mortality rates both worldwide and in Thailand. Its apparent lack of effective treatments is posing challenging public health issues. Introduction: Encouraging research results indicating probable anti-cancer properties of the Delonix regia flower extract (DRE) have prompted us to evaluate the feasibility of developing a type of product for future cancer prevention or treatment. Methods and Results: In the present report, using High Performance Liquid Chromatography (HPLC), we demonstrate in the DRE, the presence of high concentrations of three identifiable flavonoids, namely rutin 4.15±0.30 % w/w, isoquercitrin 3.04±0.02 %w/w, and myricetin 2.61±0.01 % w/w respectively while the IC50 of DPPH and ABTS assay antioxidation activity was 66.88±6.30 µg/ml and 53.65±7.24 µg/ml respectively. Discussion: Our cancer cell line studies using the MTT assay demonstrated DREs potent and dose dependent inhibition of murine leukemia cell line (P-388: 35.28±4.07% of cell viability remaining), as well as of human breast adenocarcinoma (MCF-7), human cervical carcinoma (HeLa), human oral cavity carcinoma (KB), and human colon carcinoma (HT-29) cell lines in that order of magnitude. Conclusion: Three identifiable flavonoids (rutin, isoquercitrin and myricetin) with high antioxidation activity and potent and dose dependent inhibition of murine leukemia cell line and five other cancer cell lines were documented in the DRE. The extract’s lack of cytotoxicity in 3 normal cell lines is a rare advantage not usually seen in current antineoplastic agents. Yet another challenge of the DRE was its low dissolution rate and long-term storage stability, issues to be resolved before a future product can be formulated.


1993 ◽  
Vol 21 (2) ◽  
pp. 206-209
Author(s):  
Anders H. G. Andrén ◽  
Anders P. Wieslander

Cytotoxicity, measured as inhibition of cell growth of cultured cell lines, is a widely used method for testing the safety of biomaterials and chemicals. One major technical disadvantage with this method is the continuous routine maintenance of the cell lines. We decided to investigate the possibility of storing stock cultures of fibroblasts (L-929) in an ordinary refrigerator as a means of reducing the routine workload. Stock cultures of the mouse fibroblast cell line L-929 were prepared in plastic vials with Eagle's minimum essential medium. The vials were stored in a refrigerator at 4–10°C for periods of 7–31 days. The condition of the cells after storage was determined as cell viability, cell growth and the toxic response to acrylamide, measured as cell growth inhibition. We found that the L-929 cell line can be stored for 2–3, weeks with a viabilty > 90% and a cell growth of about 95%, compared to L-929 cells grown and subcultured in the normal manner. The results also show that the toxic response to acrylamide, using refrigerator stored L-929 cells, corresponds to that of control L-929 cells. We concluded that it is possible to store L-929 cells in a refrigerator for periods of up to 3 weeks and still use the cells for in vitro cytotoxic assays.


1994 ◽  
Vol 14 (11) ◽  
pp. 7604-7610
Author(s):  
H M Pomykala ◽  
S K Bohlander ◽  
P L Broeker ◽  
O I Olopade ◽  
M O Díaz

Interstitial deletions of the short arm of chromosome 9 are associated with glioma, acute lymphoblastic leukemia, melanoma, mesothelioma, lung cancer, and bladder cancer. The distal breakpoints of the deletions (in relation to the centromere) in 14 glioma and leukemia cell lines have been mapped within the 400 kb IFN gene cluster located at band 9p21. To obtain information about the mechanism of these deletions, we have isolated and analyzed the nucleotide sequences at the breakpoint junctions in two glioma-derived cell lines. The A1235 cell line has a complex rearrangement of chromosome 9, including a deletion and an inversion that results in two breakpoint junctions. Both breakpoints of the distal inversion junction occurred within AT-rich regions. In the A172 cell line, a tandem heptamer repeat was found on either side of the deletion breakpoint junction. The distal breakpoint occurred 5' of IFNA2; the 256 bp sequenced from the proximal side of the breakpoint revealed 95% homology to long interspersed nuclear elements. One- and two-base-pair overlaps were observed at these junctions. The possible role of sequence overlaps, and repetitive sequences, in the rearrangement is discussed.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1151-1160 ◽  
Author(s):  
E Paietta ◽  
RJ Stockert ◽  
T Calvelli ◽  
P Papenhausen ◽  
SV Seremetis ◽  
...  

A cell line with immature blast cell morphology was isolated from HL-60 promyelocytic leukemia cell cultures and designated HL-T. This new cell type is biphenotypic, expressing terminal transferase (TdT) together with myelomonocytoid immunologic features. TdT enzymatic activity, undetectable in HL-60, was determined to be 140 to 180 units/10(8) HL-T cells by the dGTP-assay, approximately 20% of the activity found in lymphoblastoid cell lines. HL-T predominantly synthesize the known 58- kDa TdT-protein plus a minor 54/56-kDa doublet. The 58-kDa steady state form is nonglycosylated and is phosphorylated. Precursor antigens S3.13 and MY-10, absent on HL-60, are expressed by HL-T; however, the cells are negative for HLA-Dr. Southern blot analysis by hybridization with immunoglobulin heavy chain (JH) and T cell-receptor chain gene (T beta) probes shows JH to be in the germ-line configuration in both cell lines and the T beta gene to be in germ-line in HL-60 but to be rearranged in HL-T. Truncation of the gene encoding the granulocyte-macrophage-colony- stimulating factor (GM-CSF), as found in HL-60, is not observed in HL- T. HL-T are resistant to differentiation-induction by retinoic acid and 1,25-dihydroxyvitamin D3. Cytogenetically HL-T share with HL-60 a deletion of the short arm of chromosome 9 at breakpoint p13, an aberration frequently found in patients with T cell leukemia. In addition, HL-T display t(8;9)(p11;p24) and trisomy 20. Tetraploidy is observed in 80% of HL-T metaphases with aberrations identical to those in the diploid karyotype. Like HL-60, the new line shows some surface- antigenic-T cell characteristics. Despite an antigenic pattern most consistent with that of helper-inducer T cells (T4+, D44+/-, 4B4+, 2H4- , TQ1+/-), HL-T cells and their conditioned culture medium suppress antigen, mitogen, and mixed-leukocyte-culture-mediated lymphocyte proliferation.


Blood ◽  
1997 ◽  
Vol 90 (7) ◽  
pp. 2591-2600 ◽  
Author(s):  
Roberta Morosetti ◽  
Dorothy J. Park ◽  
Alexey M. Chumakov ◽  
Isabelle Grillier ◽  
Masaaki Shiohara ◽  
...  

Human C/EBPε is a newly cloned CCAAT/enhancer-binding transcription factor. Initial studies indicated it may be an important regulator of human myelopoiesis. To elucidate the range of expression of C/EBPε, we used reverse transcription-polymerase chain reaction (RT-PCR) analysis and examined its expression in 28 hematopoietic and 14 nonhematopoietic cell lines, 16 fresh myeloid leukemia samples, and normal human hematopoietic stem cells and their mature progeny. Prominent expression of C/EBPε mRNA occurred in the late myeloblastic and promyelocytic cell lines (NB4, HL60, GFD8), the myelomonoblastic cell lines (U937 and THP-1), the early myeloblast cell lines (ML1, KCL22, MDS92), and the T-cell lymphoblastic leukemia cell lines CEM and HSB-2. For the acute promyelocytic leukemia cell line NB4, C/EBPε was the only C/EBP family member that was easily detected by RT-PCR. No C/EBPε mRNA was found in erythroid, megakaryocyte, basophil, B lymphoid, or nonhematopoietic cell lines. Most acute myeloid leukemia samples (11 of 12) from patients expressed C/EBPε. Northern blot and RT-PCR analyses showed that C/EBPε mRNA decreased when the HL60 and KG-1 myeloblast cell lines were induced to differentiate toward macrophages. Similarly, Western blot analysis showed that expression of C/EBPε protein was either unchanged or decreased slightly as the promyelocytic cell line NB4 differentiated down the macrophage-like pathway after treatment with a potent vitamin D3 analog (KH1060). In contrast, C/EBPε protein levels increased dramatically as NB4 cells were induced to differentiate down the granulocytic pathway after exposure to 9-cis retinoic acid. Furthermore, very early, normal hematopoietic stem cells (CD34+/CD38−), purified from humans had very weak expression of C/EBPε mRNA, but levels increased as these cells differentiated towards granulocytes. Likewise, purified granulocytes appeared to express higher levels of C/EBPε mRNA than purified macrophages. Addition of phosphothiolated antisense, but not sense oligonucleotides to C/EBPε, decreased clonal growth of HL-60 and NB4 cells by about 50% compared with control cultures. Taken together, our results indicate that expression of C/EBPε is restricted to hematopoietic tissues, especially myeloid cells as they differentiate towards granulocytes and inhibition of its expression in HL-60 and NB4 myeloblasts and promyelocytes decreased their proliferative capacity. Therefore, this transcriptional factor may play an important role in the process of normal myeloid development.


1992 ◽  
Vol 12 (12) ◽  
pp. 5724-5735
Author(s):  
J Miles ◽  
T Formosa

Potential DNA replication accessory factors from the yeast Saccharomyces cerevisiae have previously been identified by their ability to bind to DNA polymerase alpha protein affinity matrices (J. Miles and T. Formosa, Proc. Natl. Acad. Sci. USA 89:1276-1280, 1992). We have now used genetic methods to characterize the gene encoding one of these DNA polymerase alpha-binding proteins (POB1) to determine whether it plays a role in DNA replication in vivo. We find that yeast cells lacking POB1 are viable but display a constellation of phenotypes indicating defective DNA metabolism. Populations of cells lacking POB1 accumulate abnormally high numbers of enlarged large-budded cells with a single nucleus at the neck of the bud. The average DNA content in a population of cells lacking POB1 is shifted toward the G2 value. These two phenotypes indicate that while the bulk of DNA replication is completed without POB1, mitosis is delayed. Deleting POB1 also causes elevated levels of both chromosome loss and genetic recombination, enhances the temperature sensitivity of cells with mutant DNA polymerase alpha genes, causes increased sensitivity to UV radiation in cells lacking a functional RAD9 checkpoint gene, and causes an increased probability of death in cells carrying a mutation in the MEC1 checkpoint gene. The sequence of the POB1 gene indicates that it is identical to the CTF4 (CHL15) gene identified previously in screens for mutations that diminish the fidelity of chromosome transmission. These phenotypes are consistent with defective DNA metabolism in cells lacking POB1 and strongly suggest that this DNA polymerase alpha-binding protein plays a role in accurately duplicating the genome in vivo.


Sign in / Sign up

Export Citation Format

Share Document