scholarly journals Action of Alpha-Tocopherol Phosphate on Hemolysis in Paroxysmal Nocturnal Hemoglobinuria

Blood ◽  
1953 ◽  
Vol 8 (4) ◽  
pp. 336-341 ◽  
Author(s):  
MARJORIE J. WILLIAMS ◽  
MARY P. CLAPP

Abstract 1. The action of alpha-tocopherol phosphate (αTPO4), an anticoagulant, on PNH hemolysis was studied by both in vitro and in vivo means. It was found that the addition of αTPO4 to the modified Ham test inhibited lysis of PNH erythrocytes. During the intramuscular administration of αTPO4, the susceptibility of the erythrocytes to lysis by fresh acidified serum progressively decreased. These cells, after incubation with the serum, gave a positive Coombs test. 2. The possible significance of these findings is briefly discussed. 3. It is concluded that αTPO4 has no therapeutic value in PNH.

2014 ◽  
Vol 6 (1) ◽  
pp. 130 ◽  
Author(s):  
Protus Arrey Tarkang ◽  
A.P. Nwakiban Atchan ◽  
J. Kiuate ◽  
F.A. Okalebo ◽  
G.A. Agbor ◽  
...  

1989 ◽  
Vol 66 (5) ◽  
pp. 2211-2215 ◽  
Author(s):  
V. Mohsenin ◽  
J. L. Gee

Previously we demonstrated that in vivo exposure of humans to NO2 resulted in significant inactivation of alpha 1-protease inhibitor (alpha 1-PI) in the bronchoalveolar lavage fluid. However, alpha 1-PI retains its elastase inhibitory activity in vitro when exposed to 10 times the concentration of NO2 used in vivo. We suggested exogenous oxidants such as O2 and NO2 exert their effect in vivo in part through lipid peroxidation. We investigated the mechanism of inactivation of alpha 1-PI in the presence or absence of lipids under oxidant atmosphere. alpha 1-PI in solutions containing phosphate buffer (control), 0.1 mM stearic acid (saturated fatty acid, 18:0), or 0.1 mM linoleic acid (polyunsaturated fatty acid, 18:2) was exposed to either N2 or NO2 (50 ppm for 4 h). Elastase inhibitory capacity of alpha 1-PI was significantly diminished in the presence of 0.1 mM linoleic acid and under NO2 atmosphere (75 +/- 8% of control, P less than 0.01), whereas there was no change in elastase inhibitory capacity of alpha 1-PI in the presence or absence (buffer only) of 0.1 mM stearic acid under a similar condition (109 +/- 11 and 94 +/- 6%, respectively). The inactivated alpha 1-PI as the result of peroxidized lipid could be reactivated by dithiothreitol and methionine sulfoxide peptide reductase, suggesting oxidation of methionine residue at the elastase inhibitory site. Furthermore the inhibitory effect of peroxidized lipid on alpha 1-PI could be prevented by glutathione and glutathione peroxidase and to some extent by alpha-tocopherol.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1696-1696
Author(s):  
Pierre-Christian Violet ◽  
Ifechukwude Ebenuwa ◽  
Stacey Chung ◽  
Jeffrey Atkinson ◽  
Danny Manor ◽  
...  

Abstract Objectives Hepato-steatosis (HS) due to obesity is now the most common cause of chronic liver disease in the Americas and Western Europe. The only means to prevent disease is avoidance of obesity. α-Tocopherol at doses of 800 I.U. daily was reported to have partial treatment effects for NASH. Because alpha tocopherol is a fat-soluble vitamin, we hypothesized that excess fat in liver, as found in HS, could act unintentionally sequester vitamin E, thereby altering its normal physiology and contributing to development of NASH. Using oral and intravenous deuterated tocopherols, evidence showing HS altered a-tocopherol physiology was reported based on pharmacokinetics studies in obese women with HS. Here we further tested the sequestration hypothesis in vitro, and in vivo. Methods In vitro, we investigated effects of fat on intracellular vitamin E localization. Control human and mouse hepatocytes and hepatocytes pre-loaded with fat were incubated with fluorescent α-tocopherol (BDP-α-tocopherol). In vivo experiments were performed using mice fed a high fat diet with different vitamin E doses. Results Compared to controls, fat- loaded cells contained more a-tocopherol, and BDP-a-tocopherol was specifically localized into intracellular fat droplets. In cells incubated with BDP a-tocopherol, we found that fat loading decreased a-tocopherol release. Induced expression of TPP, which mediates vitamin E intracellular disposition under normal conditions, was not observed in fat loaded cells, further confirming vitamin E was trapped in fat. Livers of mice fed high fat diet had more vitamin E compared to controls. By further increasing vitamin E content of the high fat diet, we observed a reduction in liver size and liver fat in the high vitamin E group. Using a mouse metabolic chamber, we observed a slight reduction of oxygen consumption rate in the high vitamin E group compared to controls. Conclusions Considered together, these findings imply that fat in the liver may produce unrecognized hepatic vitamin E sequestration, which could drive liver disease. These results are consistent with the possibility that increased vitamin E intake might, if begun at an early stage, restore vitamin E physiology, potentially decreasing or preventing progression of HS to NASH. Funding Sources NIH intramural program (DK053213–14).


Author(s):  
Chengguo Li ◽  
Qian Shen ◽  
Peng Zhang ◽  
Tao Wang ◽  
Weizhen Liu ◽  
...  

Abstract Background Identification of genomic biomarkers to predict the anticancer effects of indicated drugs is considered a promising strategy for the development of precision medicine. DNA endonuclease MUS81 plays a pivotal role in various biological processes during malignant diseases, mainly in DNA damage repair and replication fork stability. Our previous study reported that MUS81 was highly expressed and linked to tumor metastasis in gastric cancer; however, its therapeutic value has not been fully elucidated. Methods Bioinformatics analysis was used to define MUS81-related differential genes, which were further validated in clinical tissue samples. Gain or loss of function MUS81 cell models were constructed to elucidate the effect and mechanism of MUS81 on WEE1 expression. Moreover, the antitumor effect of targeting MUS81 combined with WEE1 inhibitors was verified using in vivo and in vitro assays. Thereafter, the cGAS/STING pathway was evaluated, and the therapeutic value of MUS81 for immunotherapy of gastric cancer was determined. Results In this study, MUS81 negatively correlated with the expression of cell cycle checkpoint kinase WEE1. Furthermore, we identified that MUS81 regulated the ubiquitination of WEE1 via E-3 ligase β-TRCP in an enzymatic manner. In addition, MUS81 inhibition could sensitize the anticancer effect of the WEE1 inhibitor MK1775 in gastric cancer in vitro and in vivo. Interestingly, when MUS81 was targeted, it increased the accumulation of cytosolic DNA induced by MK1775 treatment and activated the DNA sensor STING-mediated innate immunity in the gastric cancer cells. Thus, the WEE1 inhibitor MK1775 specifically enhanced the anticancer effect of immune checkpoint blockade therapy in MUS81 deficient gastric cancer cells. Conclusions Our data provide rational evidence that targeting MUS81 could elevate the expression of WEE1 by regulating its ubiquitination and could activate the innate immune response, thereby enhancing the anticancer efficacy of WEE1 inhibitor and immune checkpoint blockade combination therapy in gastric cancer cells.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Simone Hettmer ◽  
Anna C Schinzel ◽  
Daria Tchessalova ◽  
Michaela Schneider ◽  
Christina L Parker ◽  
...  

Current therapies for sarcomas are often inadequate. This study sought to identify actionable gene targets by selective targeting of the molecular networks that support sarcoma cell proliferation. Silencing of asparagine synthetase (ASNS), an amidotransferase that converts aspartate into asparagine, produced the strongest inhibitory effect on sarcoma growth in a functional genomic screen of mouse sarcomas generated by oncogenic Kras and disruption of Cdkn2a. ASNS silencing in mouse and human sarcoma cell lines reduced the percentage of S phase cells and impeded new polypeptide synthesis. These effects of ASNS silencing were reversed by exogenous supplementation with asparagine. Also, asparagine depletion via the ASNS inhibitor amino sulfoximine 5 (AS5) or asparaginase inhibited mouse and human sarcoma growth in vitro, and genetic silencing of ASNS in mouse sarcoma cells combined with depletion of plasma asparagine inhibited tumor growth in vivo. Asparagine reliance of sarcoma cells may represent a metabolic vulnerability with potential anti-sarcoma therapeutic value.


Blood ◽  
1968 ◽  
Vol 32 (5) ◽  
pp. 823-828
Author(s):  
STUART F. BLUM ◽  
FRANK H. GARDNER

Abstract The sera of patients with Paroxysmal Nocturnal Hemoglobinuria have been shown, in vitro and in vivo, to be less hemolytic for PNH erythrocytes than are normal sera. This defect may result from the liver disfunction encountered in many of the patients although the exact defect has not been defined. The necessity for using normal sera when performing the acid hemolysis test is emphasized.


2006 ◽  
Vol 34 (03) ◽  
pp. 503-509 ◽  
Author(s):  
Saswati Banerjee ◽  
Andrew D. Johnson ◽  
Katalin Csiszar ◽  
Daniel L. Wansley ◽  
Paul McGeady

An aqueous extract of Morinda citrifolia was shown to interfere with the serum-induced morphological conversion of Candida albicans from a cellular yeast to a filamentous form in vitro. The conversion of C. albicans from a cellular yeast to a filamentous form in vivo is associated with pathogenicity. No significant effect on growth in serum-free media was seen at the concentrations used to interfere with the morphological change. The same extract also inhibited the germination of Apergillus nidulans spores. These results demonstrate that M. citrifolia contains a water-soluble component or components that interfere with the morphological conversion of C. albicans and the germination of A. nidulans and may have potential therapeutic value with regard to candidiasis and aspergillosis.


1996 ◽  
Vol 37 (9) ◽  
pp. 1978-1986
Author(s):  
D Li ◽  
S Devaraj ◽  
C Fuller ◽  
R Bucala ◽  
I Jialal

2021 ◽  
Author(s):  
Xuejiao Piao ◽  
Dawei Meng ◽  
Xue Zhang ◽  
Qiang Song ◽  
Hailong Lv ◽  
...  

Abstract C9ORF72 GGGGCC repeat expansion is the most common genetic cause for amyotrophic lateral sclerosis and frontotemporal dementia, which generates abnormal DNA and RNA structures and produces toxic proteins. Recently, efficacy of CRISPR/Cas9-mediated editing has been proven in treatment of disease. However, DNA low complexity surrounding C9ORF72 expansion increases the off-target risks. Here we provide a dual-gRNA design outside of the low complexity region which enables us to remove the repeat DNA in a ‘cutting-deletion-fusion’ manner with a high fusion efficiency (50%). Our dual-gRNA design limits off-target effect and does not significantly affect C9ORF72 expression. In neurons carrying patient C9ORF72 expansion, our approach removes the repeat DNA and corrects the RNA foci in vitro and in vivo. Therefore, we conclude that our proof-of-concept design correct C9ORF72 repeat expansion, which may have potential therapeutic value for the patients.


2019 ◽  
Vol 12 (2) ◽  
pp. 603-608
Author(s):  
Anas AlAhmed ◽  
Hany Ezzat Khalil

The main objective of current study was to investigate the in vitro and in vivo antidiabetic activity of Terfezia claveryi methanol extract. In vitro antidiabetic assays such as inhibition of α-amylase enzyme and non-enzymatic glycosylation of hemoglobin were carried out. The results of α- amylase inhibition assay revealed that the inhibitory activity (IC50) of Terfezia claveryi methanol extract (‎38.7µg/ml) is stronger when compared with positive control (Acarbose IC50 value of ‎45.3‎ µg/ml). The inhibition of glycosylation of hemoglobin of Terfezia claveryi methanol extract showed almost the same IC50 (33.1µg/ml) when compared the positive control, alpha-tocopherol (‎35.4µg/ml‎). In vivo antidiabetic study revealed that Terfezia claveryi methanol extract ‎ possessed good activity at a dose of 200 mg/kg through reducing the fasting plasma glucose level (122.1‎±‎3.0 mg/dl) when compared with positive control (Glibenclamide of ‎79.4±1.4‎ mg/dl) (p < 0.001). The results from this study indicated that Terfezia claveryi methanol extract exhibited considerable in vitro and in vivo antidiabetic activities. These possible activities could be useful to consider Terfezia claveryi ‎ as therapeutic antidiabetic candidate.


Sign in / Sign up

Export Citation Format

Share Document