scholarly journals A Monocyte Conditioned Medium Is More Effective Than Defined Cytokines in Mediating the Terminal Maturation of Human Dendritic Cells

Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3640-3646 ◽  
Author(s):  
Anita Reddy ◽  
Mark Sapp ◽  
Mary Feldman ◽  
Marion Subklewe ◽  
Nina Bhardwaj

Abstract Mature human dendritic cells can be generated in substantial numbers from nonproliferating progenitors in human blood using a two-step protocol. T cell–depleted mononuclear cells are first cultured with granulocyte-macrophage colony-stimulating factor and interleukin-4 (IL-4) and then exposed to monocyte conditioned medium (MCM). The dendritic cells generated using this approach are rendered terminally mature and are the most potent antigen presenting cells identified to date in humans. We sought to characterize factors in MCM that induce the terminal differentiation of dendritic cells. MCM contained substantial, although varying, quantities of several factors including tumor necrosis factor-α, IL-1β, IL-6, and interferon-α. However, none of the four factors, individually or in various combinations, could fully substitute for the MCM to generate irreversibly differentiated dendritic cells. The yields, percentage of cells expressing the mature phase marker CD83, and mixed leukocyte reaction–stimulatory function were lower when defined cytokines were used in the place of MCM. Therefore, the full maturation of dendritic cells, because it entails changes in many known cell and molecular properties, requires a number of different cytokines that are released in tandem from appropriately stimulated monocytes. We propose that MCM-matured dendritic cells will be the most effective adjuvants for immunotherapy in vivo.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3873-3873
Author(s):  
Godfrey ChiFung Chan ◽  
W.K. Chan ◽  
H.K. Law ◽  
Z.B. Lin ◽  
Y.L. Lau

Abstract Background: Purified polysaccharides extracted from plants and fungi have been shown to induce immune responses in-vivo and vitro over the past decade. Currently, most of these polysaccharides are found to be glucan but with different branch structure and sizes. Their relative potency and effect on human immune cells remains unknown. This study aims to compare their relative effect on human dendritic cell, the most potent antigen presenting cell. Materials & Methods: We selected 2 prototypes of purified polysaccharides extracted from: 1) Ganoderma lucidum (GL, Lingzhi, Reishi) mycelium, a widely used herb with long and branching β (1® 3), (1® 6) glucan structure (provided by Prof. Lin ZB, Beijing) and 2) Barley with shorter and different branching β (1® 3), (1® 4) structure (provided by Prof. Cheung VNK, NY). Their characteristics and chemical properties had been reported previously. Human peripheral blood mononuclear cells (PBMCs) proliferation was studied by XTT assay. Human dendritic cells (DCs) were derived from monocytes and maturation of DCs were determined by: a) immunophenotypic shift using flow cytometer; 2) dextran endocytosis assay and 3) mixed lymphocytes reaction. Cytokine secretions were determined by ELISA test. Comparisons between means were by nonparametric Student’s t test (2-tailed). Results: We found that purified polysaccharides from GL but not barley could induce PBMCs proliferation and maturation of DCs. GL polysaccharides could enhance phenotypic and functional maturation of DCs with significant IL-12 and IL-10 production. DCs were relatively inert to Barley glucans stimulation. However, both polysaccharides did not polarize T cells into the direction of T helper 1, T helper 2 or regulatory T cells. Conclusions: Our study shown that purified polysaccharides extracted from plants and fungi have different effect on human DCs and their potency and effects are probably affected by their respective sources and structures.


2001 ◽  
Vol 7 (2) ◽  
pp. 95-99 ◽  
Author(s):  
Yu-Min Huang ◽  
Mathilde Kouwenhoven ◽  
Ya-Ping Jin ◽  
Rayomand Press ◽  
Wen-Xin Huang ◽  
...  

Dendritic cells (DC) are important antigen presenting cells (APC) and play a major role in initiating and orchestrating immune responses by priming T cells. Little is known about involvement of DC in multiple sclerosis (MS), where auto-aggressive T cells against myelin autoantigens are considered to contribute to inflammation and demyelination in the central nervous system. In this study, we compared phenotype and cytokine secretion of DC from patients with MS, other neurological diseases (OND) and healthy subjects. DC were generated from blood adherent mononuclear cells (MNC) by culture for 7 days with granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). The yield and morphology of DC were similar in MS patients and controls. In both, the DC phenotype was that of immature myeloid lineage, comprising CD1a+ and CD11c+. The proportion of CD1a+ DC, being important for presentation of lipid antigens to T cells, was higher in MS patients compared to controls. The proportion of CD86+ DC, a co-stimulatory molecule that is assumed to promote Th2 differentiation, was low in MS. Low proportions of CD86+ DC were only observed in untreated MS patients but not in patients treated with IFN-b. Production of IL-10 and IL-12 p40 by DC did not differ in MS patients and controls. These findings indicate that alterations of functionally important surface molecules on DC are associated with MS.


Blood ◽  
2004 ◽  
Vol 103 (7) ◽  
pp. 2668-2676 ◽  
Author(s):  
Beatriz León ◽  
Gloria Martínez del Hoyo ◽  
Verónica Parrillas ◽  
Héctor Hernández Vargas ◽  
Paloma Sánchez-Mateos ◽  
...  

Abstract The monocyte capacity to differentiate into dendritic cells (DCs) was originally demonstrated by human in vitro DC differentiation assays that have subsequently become the essential methodologic approach for the production of DCs to be used in DC-mediated cancer immunotherapy protocols. In addition, in vitro DC generation from monocytes is a powerful tool to study DC differentiation and maturation. However, whether DC differentiation from monocytes occurs in vivo remains controversial, and the physiologic counterparts of in vitro monocyte-derived DCs are unknown. In addition, information on murine monocytes and monocyte-derived DCs is scarce. Here we show that mouse bone marrow monocytes can be differentiated in vitro into DCs using similar conditions as those defined in humans, including in vitro cultures with granulocyte-macrophage colony-stimulating factor and interleukin 4 and reverse transendothelial migration assays. Importantly, we demonstrate that after in vivo transfer monocytes generate CD8- and CD8+ DCs in the spleen, but differentiate into macrophages on migration to the thoracic cavity. In conclusion, we support the hypothesis that monocytes generate DCs not only on entry into the lymph and migration to the lymph nodes as proposed, but also on extravasation from blood and homing to the spleen, suggesting that monocytes represent immediate precursors of lymphoid organ DCs. (Blood. 2004;103:2668-2676)


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4328-4335
Author(s):  
Shin-ichiro Fujii ◽  
Hirofumi Hamada ◽  
Koji Fujimoto ◽  
Taizo Shimomura ◽  
Makoto Kawakita

Dendritic cells (DCs), which phagocytose antigens and subsequently proliferate and migrate, may be the most powerful antigen-presenting cells that activate naive T cells. To determine their role in the immune response to tumors, we used WEHI-3B murine leukemia cells transduced with adenovirus vectors expressing cytokines. We found that mixtures of irradiated cells expressing granulocyte-macrophage colony-stimulating factor (GM-CSF) plus those expressing interleukin-4 (IL-4) or tumor necrosis factor  (TNF) protected mice against WEHI-3B–induced leukemias. When bone marrow mononuclear cells (BMMNCs) obtained from mice that had been injected with irradiated, cytokine-expressing tumor cells were injected into tumor-bearing mice, the survival of the latter was significantly prolonged; the longest survival was observed in mice receiving BMMNCs containing an increased number of DCs from animals injected with a mixture of tumor cells expressing GM-CSF with those expressing IL-4. Assay for antileukemic effects in spleen of the latter animals showed specific antitumor cytotoxicity against WEHI-3B, suggesting that DCs from donor mice activate specific T cells in the tumor-bearing recipients. These results suggest that the infusion of syngeneic BMMNCs stimulated with cytokine-expressing tumor cells may be effective in treating certain types of tumors.


2001 ◽  
Vol 69 (11) ◽  
pp. 6813-6822 ◽  
Author(s):  
Simon L. Newman ◽  
Angela Holly

ABSTRACT Candida albicans is a component of the normal flora of the alimentary tract and also is found on the mucocutaneous membranes of the healthy host. Candida is the leading cause of invasive fungal disease in premature infants, diabetics, and surgical patients, and of oropharyngeal disease in AIDS patients. As the induction of cell-mediated immunity to Candida is of critical importance in host defense, we sought to determine whether human dendritic cells (DC) could phagocytose and degradeCandida and subsequently present Candidaantigens to T cells. Immature DC obtained by culture of human monocytes in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 phagocytosed unopsonized Candida in a time-dependent manner, and phagocytosis was not enhanced by opsonization of Candida in serum. Like macrophages (Mφ), DC recognized Candida by the mannose-fucose receptor. Upon ingestion, DC killed Candida as efficiently as human Mφ, and fungicidal activity was not enhanced by the presence of fresh serum. Although phagocytosis ofCandida by DC stimulated the production of superoxide anion, inhibitors of the respiratory burst (or NO production) did not inhibit killing of Candida, even when phagocytosis was blocked by preincubation of DC with cytochalasin D. Further, although apparently only modest phagolysosomal fusion occurred upon DC phagocytosis of Candida, killing ofCandida under anaerobic conditions was almost equivalent to killing under aerobic conditions. Finally, DC stimulatedCandida-specific lymphocyte proliferation in a concentration-dependent manner after phagocytosis of both viable and heat-killed Candida cells. These data suggest that, in vivo, such interactions between DC and C. albicans may facilitate the induction of cell-mediated immunity.


Blood ◽  
2001 ◽  
Vol 97 (11) ◽  
pp. 3655-3657 ◽  
Author(s):  
Masaharu Nobuyoshi ◽  
Yoichiro Kusunoki ◽  
Toshio Seyama ◽  
Kazunori Kodama ◽  
Akiro Kimura ◽  
...  

Human dendritic cell (DC) precursors were engrafted and maintained in NOD/SCID- human chimeric mice (NOD/SCID-hu mice) implanted with human cord blood mononuclear cells, although no mature human DCs were detected in lymphoid organs of the mice. Two months after implantation, bone marrow (BM) cells of NOD/SCID-hu mice formed colonies showing DC morphology and expressing CD1a in methylcellulose culture with granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor α (TNF-α). The CD34−/CD4+/HLA-DR+ cell fraction in NOD/SCID-hu mouse BM generated CD1a+ cells that were highly stimulatory in mixed leukocyte reactions in culture with GM-CSF and TNF-α. These results suggest a strong potential for NOD/SCID-hu BM to generate human DCs, although DC differentiation may be blocked at the CD34−/CD4+/HLA-DR+ stage.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 12517-12517
Author(s):  
B. Han ◽  
Z. Huan ◽  
F. Xiaohong ◽  
L. Rong ◽  
F. Guangli ◽  
...  

12517 Background: To study toxicity tolerance and dose-effect relationship of carcinoembryuonic antigen peptide-pulsed dendritic cells in patients with advanced lung cancer. Methods: cells preparations enriched for autologous DCs were generated from the patients plastic adherent peripheral blood mononuclear cells in media supplemented with granulocyte macrophage colony -stimulating factor and interleukin-4. 37C0, 5%CO2 culture for 7–10. The DCs were loaded with carcinoembryonic antigen(CEA) in day 7, Groups of three to six patients received four weekly or biweekly i.v. infusions of the CAP-1-loaded DC in escalating dose levels of 1 × 106, 1 × 107, and 1 × 108 cells/dose. Patients with lung cancer received iv injections DCs. There were no toxicities directly referable to the treatments. Results: Total 22 patients with lung cancer received DCs immunotherapy. DCs infusion were 2.5×106-9.6×107,means 15.03×106. The early clinical trials suggest that vaccination with CEA vaccines is safe, producing few side-effects, and can lead to CEA-specific immunity. Conclusions: We conclude that it is feasible and safe to generate and administer large numbers of DCs loaded with CEA peptide to patients with lung cancer. No significant financial relationships to disclose.


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3482-3495 ◽  
Author(s):  
Karin Tarte ◽  
Zhao Yang Lu ◽  
Genevieve Fiol ◽  
Eric Legouffe ◽  
Jean-François Rossi ◽  
...  

Abstract Defects in immune response are often reported in patients with multiple myeloma (MM). Because dendritic cells (DCs) are key effectors in promoting cellular immunity and are potential vectors for immunotherapy, we have evaluated the ability of MM patients' apheresis cells to generate DCs in short-term cultures. We report here the obtaining of a virtually pure population of DCs (89.7% ± 6%, n = 18) after culturing adherent apheresis cells for 7 days with granulocyte-macrophage colony-stimulating factor (GM-CSF ) and interleukin-4 (IL-4). These cells exhibited all the phenotypic characteristics (CD1a+, HLA-DR+, CD80+, CD40+, CD14−) and the MLR stimulating capacity of mature DCs. The number of DCs reached 12.1% of the initial apheresis cell number put into culture. As DC precursors involved in this model were CD34− cells, the unabsorbed cells resulting from clinical-grade CD34 purification were a reliable source of DCs, even after freezing. The proliferation of DC precursors could be increased 10-fold by adding IL-3 and tumor necrosis factor-α together with GM-CSF and IL-4. Thus, CD34− apheresis cells from patients with MM offer an interesting source for generating pure, functional, and potentially proliferating DCs.


Sign in / Sign up

Export Citation Format

Share Document