scholarly journals Effects of Guanine Nucleotide Depletion on Cell Cycle Progression in Human T Lymphocytes

Blood ◽  
1998 ◽  
Vol 91 (8) ◽  
pp. 2896-2904 ◽  
Author(s):  
Josée Laliberté ◽  
Ann Yee ◽  
Yue Xiong ◽  
Beverly S. Mitchell

Depletion of guanine nucleotide pools after inhibition of inosine monophosphate dehydrogenase (IMPDH) potently inhibits DNA synthesis by arresting cells in G1 and has been shown to induce the differentiation of cultured myeloid and erythroid cell lines, as well as chronic granulocytic leukemic cells after blast transformation. Inhibitors of IMPDH are also highly effective as immunosuppressive agents. The mechanism underlying these pleiotropic effects of depletion of guanine nucleotides is unknown. We have examined the effects of mycophenolic acid (MPA), a potent IMPDH inhibitor, on the cell cycle progression of activated normal human T lymphocytes. MPA treatment resulted in the inhibition of pRb phosphorylation and cell entry into S phase. The expression of cyclin D3, a major component of the cyclin-dependent kinase (CDK) activity required for pRb phosphorylation, was completely abrogated by MPA treatment of T cells activated by interleukin-2 (IL-2) and leucoagglutinin (PHA-L), whereas the expression of cyclin D2, CDK6, and CDK4 was more mildly attenuated. The direct kinase activity of a complex immunoprecipitated with anti-CDK6 antibody was also inhibited. In addition, MPA prevented the IL-2–induced elimination of p27Kip1, a CDK inhibitor, and resulted in the retention of high levels of p27Kip1 in IL-2/PHA-L–treated T cells bound to CDK2. These results indicate that inhibition of the de novo synthesis of guanine nucleotides blocks the transition of normal peripheral blood T lymphocytes from G0 to S phase in early- to mid-G1 and that this cell cycle arrest results from inhibition of the induction of cyclin D/CDK6 kinase and the elimination of p27Kip1 inhibitory activity.

1993 ◽  
Vol 204 (2) ◽  
pp. 260-267 ◽  
Author(s):  
Naohiro Terada ◽  
Reuven Or ◽  
Agota Szepesi ◽  
Joseph J. Lucas ◽  
Erwin W. Gelfand

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 585-585
Author(s):  
Julia Brown ◽  
Nikolaos Patsoukis ◽  
Vassiliki A Boussiotis

Abstract Abstract 585 The PD-1 pathway plays a critical role in the inhibition of T cell activation and the maintenance of T cell tolerance. PD-1 is expressed on activated T cells and limits T cell clonal expansion and effector function upon engagement with its ligands PD-L1 and PD-L2. PD-1 signals are vital for inhibition of autoimmunity whereas PD-1 ligation by PD-L1 and PD-L2 expressed on malignant cells has a detrimental effect on tumor-specific immunity. Furthermore, PD-1 signals result in T cell exhaustion in several chronic viral infections. The mechanism via which PD-1 signals mediate inhibition of T cell expansion is currently poorly understood. Here, we sought to determine the effects of PD-1 signals on mechanistic regulation of cell cycle progression mediated via TCR/CD3 and CD28 in primary human CD4+ T cells using anti-CD3/CD28 with or without agonist anti-PD-1 mAb conjugated to magnetic beads. Cell cycle analysis by ethynyl-deoxyuridine incorporation revealed that PD-1 induced blockade of cell cycle progression at the early G1 phase. To determine the molecular mechanisms underlying the blocked cell cycle progression we examined the expression and activation of cyclins and cdks and the regulation of cdk inhibitors that counterbalance the enzymatic activation of cyclin/cdk holoenzyme complexes. Our studies revealed that PD-1 mediated signals inhibited upregulation of Skp2, the SCF ubiquitin ligase that leads p27kip1 cdk inhibitor to ubiquitin-dependent degradation, and resulted in accumulation of p27kip1. Expression of cyclin E that is induced at the G1/S phase transition, and cyclin A that is synthesized during the S phase of the cell cycle, was dramatically reduced in the presence of PD-1 signaling. Strikingly, although expression of cdk4 and cdk2 was comparable between cells cultured in the presence or in the absence of PD-1, cdk2 enzymatic activation was significantly reduced in the presence of PD-1 signaling. Smad3 is a novel critical cdk substrate. Maximum cdk-mediated Smad3 phosphorylation occurs at the G1/S phase junction and requires activation of cdk2. Phosphorylation by cdk antagonizes TGF-β-induced transcriptional activity and antiproliferative function of Smad3 whereas impaired phosphorylation on the cdk-specific sites renders Smad3 more effective in executing its antiproliferative function. Based on those findings, we examined the effects of PD-1 signaling on Smad3 phosphorylation on cdk-specific and TGF-β-specific sites using site-specific phospho-Smad3 antibodies. Compared to anti-CD3/CD28 alone, culture in the presence of PD-1 induced impaired cdk2 activity, reduced levels of Smad3 phosphorylation on the cdk-specific sites and increased Smad3 phophorylation on the TGF-b-specific site. To determine whether the differential phosphorylation of Smad3 might differentially regulate Smad3 transcriptional activity in CD4+ T cells cultured in the presence versus the absence of PD-1, we examined expression of the INK family cdk4/6 inhibitor p15, a known downstream transcriptional target of Smad3. Expression of p15 was upregulated in CD4+ T cells cultured in the presence of PD-1 but not in cells cultured in the presence of CD3/CD28-coated beads alone. These results indicate that PD-1 signals inhibit cell cycle progression by mediating upregulation of both KIP and INK family of cdk inhibitors and Smad3 is a critical component of this mechanism, regulating blockade at the early G1 phase. Disclosures: No relevant conflicts of interest to declare.


1998 ◽  
Vol 111 (15) ◽  
pp. 2247-2255
Author(s):  
R. Patel ◽  
B. Bartosch ◽  
J.L. Blank

We have examined the regulation of the c-Jun NH2-terminal kinase (JNK) subfamily of mitogen-activated protein kinases (MAPKs) in response to inhibition of DNA replication during the cell cycle of human T-lymphocytes. In this study, we demonstrate that JNK is rapidly activated following release of T-lymphocytes from G1/S-phase arrest and that this activation precedes resumption of DNA synthesis upon S-phase progression. We also show that activation of JNK correlates with dissociation of the cyclin-dependent protein kinase (CDK) inhibitor, p21WAF1, from JNK1. Since JNK1 isolated from T-lymphocytes by immunoprecipitation can be inhibited by recombinant p21WAF1 in vitro, these data suggest that JNK activation may be regulated in part by its dissociation from p21WAF1. The observation of a dynamic, physical association of native JNK1 and p21WAF1 in vivo has not previously been described and suggests a novel mechanism for JNK-mediated regulation of the cell cycle of human T-lymphocytes.


2004 ◽  
Vol 174 (1) ◽  
pp. 155-163 ◽  
Author(s):  
Christine T. Duthoit ◽  
Divya J. Mekala ◽  
Rajshekkhar S. Alli ◽  
Terrence L. Geiger

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3350-3350
Author(s):  
Stephen J. Orr ◽  
Rong Wang ◽  
Nicholas C. Lea ◽  
Constantinos Chronis ◽  
Arun K. Ramani ◽  
...  

Abstract We identified a G0→G1 commitment point in primary human T cells that controls entry into the cell cycle from quiescence. We demonstrated proof of principle that cellular pathways regulating cell cycle progression and effector functions that normally coincide during CD3/CD28 stimulation can be uncoupled experimentally. We have now used systems biology approaches to identify nuclear protein networks in primary human T cells that are regulated during the transition from quiescence into the cell cycle (G0→G1→S-phase). First we sequenced proteins that became bound to chromatin & nuclear matrix in G1 but were not bound in G0 and vice versa by mass spectrometry. Bioinformatic analysis identified 76 proteins specifically bound in G0 not G1 and 254 bound in G1 not G0. 179 of the 254 proteins bound in G1 not G0 (i.e. dynamic protein changes) were mapped to the 55,000 human protein interaction dataset. These are involved in numerous cellular functions, including epigenetics, transcription, RNA splicing & transport, and others. Cell cycle regulated chromatin/matrix binding of a subset was verified by western blotting (2/2 bound in G0 not G1 and 22/23 bound in G1 not G0). One of the proteins induced and bound in G1 was SAP145 (SF3B2). This is a component of the ubiquitous SF3b RNA splicing complex, involved in both major (U2-type) and minor (U12-type) spliceosomes. Since SAP145 is induced during G1 we investigated whether there was a role for SAP145 in regulating cell cycle progression. T cells depleted of SAP145 by siRNA enter G1 from G0 but progress poorly through S phase and die, probably by apoptosis. The same occurs if another component of the SF3B complex, SAP49 (SF3B4) is depleted with siRNA, indicating that the effect is due to depleting the complex rather than the individual SF3B protein. Proteins that are induced during G1 by CD3/CD28 stimulation e.g. cyclin D3, Cdc6 and cdc2 are produced normally when SAP145 is depleted, suggesting that their pre-mRNAs are spliced normally. In contrast, the expression of p107 and cyclin A2 are reduced markedly when SAP145 is depleted. Therefore, a systems biology approach to analysing cell cycle transitions identifies the splicing protein, SAP145 as rate-limiting for the G1 →S phase cell cycle transition but not for the transition from G0→G1.


2021 ◽  
Vol 22 (11) ◽  
pp. 5483
Author(s):  
Luisa F. Bustamante-Jaramillo ◽  
Celia Ramos ◽  
Cristina Martín-Castellanos

Cyclins and CDKs (Cyclin Dependent Kinases) are key players in the biology of eukaryotic cells, representing hubs for the orchestration of physiological conditions with cell cycle progression. Furthermore, as in the case of meiosis, cyclins and CDKs have acquired novel functions unrelated to this primal role in driving the division cycle. Meiosis is a specialized developmental program that ensures proper propagation of the genetic information to the next generation by the production of gametes with accurate chromosome content, and meiosis-specific cyclins are widespread in evolution. We have explored the diversification of CDK functions studying the meiosis-specific Crs1 cyclin in fission yeast. In addition to the reported role in DSB (Double Strand Break) formation, this cyclin is required for meiotic S-phase progression, a canonical role, and to maintain the architecture of the meiotic chromosomes. Crs1 localizes at the SPB (Spindle Pole Body) and is required to stabilize the cluster of telomeres at this location (bouquet configuration), as well as for normal SPB motion. In addition, Crs1 exhibits CDK(Cdc2)-dependent kinase activity in a biphasic manner during meiosis, in contrast to a single wave of protein expression, suggesting a post-translational control of its activity. Thus, Crs1 displays multiple functions, acting both in cell cycle progression and in several key meiosis-specific events.


Marine Drugs ◽  
2019 ◽  
Vol 17 (4) ◽  
pp. 205
Author(s):  
Su-Jin Jeong ◽  
Jeong-Wook Choi ◽  
Min-Kyeong Lee ◽  
Youn-Hee Choi ◽  
Taek-Jeong Nam

Spirulina is a type of filamentous blue-green microalgae known to be rich in nutrients and to have pharmacological effects, but the effect of spirulina on the small intestine epithelium is not well understood. Therefore, this study aims to investigate the proliferative effects of spirulina crude protein (SPCP) on a rat intestinal epithelial cells IEC-6 to elucidate the mechanisms underlying its effect. First, the results of wound-healing and cell viability assays demonstrated that SPCP promoted migration and proliferation in a dose-dependent manner. Subsequently, when the mechanisms of migration and proliferation promotion by SPCP were confirmed, we found that the epidermal growth factor receptor (EGFR) and mitogen-activated protein (MAPK) signaling pathways were activated by phosphorylation. Cell cycle progression from G0/G1 to S phase was also promoted by SPCP through upregulation of the expression levels of cyclins and cyclin-dependent kinases (Cdks), which regulate cell cycle progression to the S phase. Meanwhile, the expression of cyclin-dependent kinase inhibitors (CKIs), such as p21 and p27, decreased with SPCP. In conclusion, our results indicate that activation of EGFR and its downstream signaling pathway by SPCP treatment regulates cell cycle progression. Therefore, these results contribute to the research on the molecular mechanism for SPCP promoting the migration and proliferation of rat intestinal epithelial cells.


2006 ◽  
Vol 176 (3) ◽  
pp. 1331-1339 ◽  
Author(s):  
Rajia Bahri ◽  
Francois Hirsch ◽  
Adeline Josse ◽  
Nathalie Rouas-Freiss ◽  
Nicolas Bidere ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document