Notch1-Induced Delay of Human Hematopoietic Progenitor Cell Differentiation Is Associated With Altered Cell Cycle Kinetics

Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 838-848 ◽  
Author(s):  
Nadia Carlesso ◽  
Jon C. Aster ◽  
Jeffrey Sklar ◽  
David T. Scadden

Hematopoiesis is a balance between proliferation and differentiation that may be modulated by environmental signals. Notch receptors and their ligands are highly conserved during evolution and have been shown to regulate cell fate decisions in multiple developmental systems. To assess whether Notch1 signaling may regulate human hematopoiesis to maintain cells in an immature state, we transduced a vesicular stomatitis virus G-protein (VSV-G) pseudo-typed bicistronic murine stem cell virus (MSCV)-based retroviral vector expressing a constitutively active form of Notch1 (ICN) and green fluorescence protein into the differentiation competent HL-60 cell line and primary cord blood–derived CD34+ cells. In addition, we observed endogenous Notch1 expression on the surface of both HL-60 cells and primary CD34+ cells, and therefore exposed cells to Notch ligand Jagged2, expressed on NIH3T3 cells. Both ligand-independent and ligand-dependent activation of Notch resulted in delayed acquisition of differentiation markers by HL-60 cells and cord blood CD34+ cells. In addition, primary CD34+cells retained their ability to form immature colonies, colony-forming unit–mix (CFU-mix), whereas control cells lost this capacity. Activation of Notch1 correlated with a decrease in the fraction of HL-60 cells that were in G0/G1phase before acquisition of a mature cell phenotype. This enhanced progression through G1 was noted despite preservation of the proliferative rate of the cells and the overall length of the cell cycle. These findings show that Notch1 activation delays human hematopoietic differentiation and suggest a link of Notch differentiation effects with altered cell cycle kinetics.

Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 838-848 ◽  
Author(s):  
Nadia Carlesso ◽  
Jon C. Aster ◽  
Jeffrey Sklar ◽  
David T. Scadden

Abstract Hematopoiesis is a balance between proliferation and differentiation that may be modulated by environmental signals. Notch receptors and their ligands are highly conserved during evolution and have been shown to regulate cell fate decisions in multiple developmental systems. To assess whether Notch1 signaling may regulate human hematopoiesis to maintain cells in an immature state, we transduced a vesicular stomatitis virus G-protein (VSV-G) pseudo-typed bicistronic murine stem cell virus (MSCV)-based retroviral vector expressing a constitutively active form of Notch1 (ICN) and green fluorescence protein into the differentiation competent HL-60 cell line and primary cord blood–derived CD34+ cells. In addition, we observed endogenous Notch1 expression on the surface of both HL-60 cells and primary CD34+ cells, and therefore exposed cells to Notch ligand Jagged2, expressed on NIH3T3 cells. Both ligand-independent and ligand-dependent activation of Notch resulted in delayed acquisition of differentiation markers by HL-60 cells and cord blood CD34+ cells. In addition, primary CD34+cells retained their ability to form immature colonies, colony-forming unit–mix (CFU-mix), whereas control cells lost this capacity. Activation of Notch1 correlated with a decrease in the fraction of HL-60 cells that were in G0/G1phase before acquisition of a mature cell phenotype. This enhanced progression through G1 was noted despite preservation of the proliferative rate of the cells and the overall length of the cell cycle. These findings show that Notch1 activation delays human hematopoietic differentiation and suggest a link of Notch differentiation effects with altered cell cycle kinetics.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3359-3359
Author(s):  
Michihiro Kobayashi ◽  
Edward F. Srour

Abstract Hematopoietic stem cells (HSCs) are predominantly quiescent with only a small number entering active phases of cell cycle at any time point. With such tightly regulated cell cycle kinetics, HSCs ensure preservation of the stem cell pool. Many cell cycle-related proteins, mainly tumor suppressor genes, are involved in maintenance of HSCs quiescence. Dmtf1 (Cyclin D-binding Myb-like Protein1) is a transcription factor that negatively regulates cell cycle by inducing Arf expression, and its deletion has been reported in some leukemias (Bodner SM et al, 1999). As there is no information regarding the role of Dmtf1 in hematopoiesis, we examined the impact of Dmtf1 on regulating cell cycle kinetics of hematopoietic progenitor cells. Dmtf1 mRNA was expressed in human granulocytes, lymphocytes, CD34+ cells, and in murine Sca1+lin-CD117+ (KSL) cells. Using retroviral vectors (MIEG3/IRES-GFP), we first investigated cell cycle progression in 293 cells transduced with four different constructs; GFP only control vector (−), wild type Dmtf1 (WT), and two dominant negative mutants expressing a point mutation (K319E) or a deleted myb-like repeat box (dMHR). A total of 36.0% of sorted and cultured GFP+ control (−) cells were in S/G2+M 24hr after initiation of culture. Whereas 30.8% of cells expressing (WT) were in S/G2+M at the same time point, expression of the two dominant negative mutants K319E and dMHR induced 46.6% and 45.5% of the cells into S/G2+M, respectively suggesting that loss of Dmtf1 activity results in rapid cell proliferation. Interestingly, a 2.5-fold increase in the ecxpression of Arf and p21 mesured by qPCR was detected in cells transduced with WT only whereas other transduced cells did not show any change in expression of both Arf and p21. The impact of these constructs was then evaluated in cord blood cells using CFU assays. Cord blood CD34+ cells were transduced with the four vectors mentioned above and GFP+ cells were subsequently sorted and cultured. Both K319E and dMHR induced a 25% increase in the number of clonogenic progenitors relative to (−) while a modest decrease of 10% in colony numbers was detected in the WT group. Cells cycle analysis of these cells is currently under investigation. These results demonstrate that Dmtf1 acts as a negative regulator of cell cycle control in hematopoietic cells and suggests that it may play a role in the maintenance of HSC quiescence.


Blood ◽  
2010 ◽  
Vol 116 (15) ◽  
pp. 2812-2821 ◽  
Author(s):  
Fabiana Perna ◽  
Nadia Gurvich ◽  
Ruben Hoya-Arias ◽  
Omar Abdel-Wahab ◽  
Ross L. Levine ◽  
...  

Abstract L3MBTL1, the human homolog of the Drosophila L(3)MBT polycomb group tumor suppressor gene, is located on chromosome 20q12, within the common deleted region identified in patients with 20q deletion-associated polycythemia vera, myelodysplastic syndrome, and acute myeloid leukemia. L3MBTL1 is expressed within hematopoietic CD34+ cells; thus, it may contribute to the pathogenesis of these disorders. To define its role in hematopoiesis, we knocked down L3MBTL1 expression in primary hematopoietic stem/progenitor (ie, CD34+) cells isolated from human cord blood (using short hairpin RNAs) and observed an enhanced commitment to and acceleration of erythroid differentiation. Consistent with this effect, overexpression of L3MBTL1 in primary hematopoietic CD34+ cells as well as in 20q− cell lines restricted erythroid differentiation. Furthermore, L3MBTL1 levels decrease during hemin-induced erythroid differentiation or erythropoietin exposure, suggesting a specific role for L3MBTL1 down-regulation in enforcing cell fate decisions toward the erythroid lineage. Indeed, L3MBTL1 knockdown enhanced the sensitivity of hematopoietic stem/progenitor cells to erythropoietin (Epo), with increased Epo-induced phosphorylation of STAT5, AKT, and MAPK as well as detectable phosphorylation in the absence of Epo. Our data suggest that haploinsufficiency of L3MBTL1 contributes to some (20q−) myeloproliferative neoplasms, especially polycythemia vera, by promoting erythroid differentiation.


Author(s):  
Dongya Jia ◽  
Mohit Kumar Jolly ◽  
Prakash Kulkarni ◽  
Herbert Levine

Waddington’s epigenetic landscape, a famous metaphor in developmental biology, depicts how a stem cell progresses from an undifferentiated phenotype to a differentiated one. The concept of “landscape” in the context of dynamical system theory represents a high-dimensional cell state space, in which each cell phenotype is considered as an “attractor” that is determined by interactions among multiple variables (molecular players), and is buffered against environmental fluctuations. Further, biological noise is thought to play an important role during these cell-fate decisions and in fact controls transitions between different phenotypes. Here, we discuss these phenotypic transitions in cancer from a dynamical systems perspective and invoke the concept of “cancer attractors” – hidden stable states of the underlying regulatory network that are not occupied by normal cells. Using epithelial-to-mesenchymal transition (EMT), cancer stem-like properties, metabolic reprogramming and the emergence of drug/hormone resistance as examples, we illustrate how phenotypic plasticity in cancer cells enables them to acquire hybrid phenotypes (such as hybrid epithelial/mesenchymal and hybrid metabolic phenotypes) that tend to be more aggressive and notoriously resilient to drug/hormone treatment. Furthermore, we highlight multiple factors that may give rise to phenotypic plasticity in cancer cells, such as (a) multi-stability or oscillatory behaviors governed by underlying regulatory networks involved in cell-fate decisions in cancer cells, and (b) network rewiring due to conformational dynamics of intrinsically disordered proteins (IDPs) that are highly enriched in cancer cells. We conclude by discussing why a therapeutic approach that promotes ‘recanalization’, i.e. the exit from “cancer attractors” and re-entry into “normal attractors”, is more likely to succeed rather than a conventional approach that targets individual molecules/pathways.


Blood ◽  
1995 ◽  
Vol 86 (1) ◽  
pp. 164-175 ◽  
Author(s):  
G Condorelli ◽  
L Vitelli ◽  
M Valtieri ◽  
I Marta ◽  
E Montesoro ◽  
...  

The Id proteins and basic helix-loop-helix (bHLH) proteins play major roles in specifying cell fate decisions in diverse biologic settings. A potential role for Id and TAL1/E2A bHLH genes in hematopoiesis has been suggested by studies on immortalized cell lines. However, it is uncertain whether these observations reflect normal hematopoiesis. We have investigated the expression pattern of Id2 and TAL1/E2A genes in liquid suspension culture of purified hematopoietic progenitor cell (HPCs) undergoing erythroid or granulopoietic differentiation in the first culture week and maturation to terminal cells in the second week. In quiescent, freshly purified HPCs, Id2 mRNA is detected by reverse transcriptase-polymerase chain reaction (RT-PCR), whereas TAL1 and E2A mRNAs are not. At the onset of erythroid differentiation, Id2 mRNA is downregulated, while E2A and TAL1 mRNAs are concomitantly upregulated: their expression is further increased at erythroblast level. Conversely, Id2 is not downmodulated in granulopoietic culture, except for a late decline at day 10 to 12, while TAL1 and E2A are only transiently induced in the first week of granulopoietic differentiation. The expression pattern of the TAL1/E2A heterodimer, as evaluated by mobility shift assay, is consistent with RT-PCR results (except for lower levels of the heterodimer in late erythroid maturation). TAL1 protein level, analyzed by Western blot, shows a pattern consistent with gelshift results. Functional experiments were performed on purified HPCs treated with phosphorothioate antisense oligodeoxynucleotides to Id2 or TAL1 mRNA. The results are strictly consistent with the expression studies: anti-Id2 oligomer (alpha-Id2) causes a significant dose-dependent increase of erythroid colony formation, whereas alpha-TAL1 induces a selective dose-related inhibitory effect on erythroid colonies, as compared with untreated or scrambled oligomer-treated control HPCs. Finally, murine and human glutathione-S-transferase (GST)-Id2 polypeptides compete the TAL1/E2A- specific DNA binding activity when added to the nuclear extracts derived from erythroid culture cells, thus indicating biochemical and suggesting functional interaction of Id2 with the TAL1/E2A complex. These novel observations indicate a coordinate expression and function of an inhibitory Id protein (Id2) and a stimulatory bHLH/bHLH heterodimer (TAL1/E2A) in normal erythroid differentiation.


Blood ◽  
1997 ◽  
Vol 90 (1) ◽  
pp. 85-96 ◽  
Author(s):  
Christopher J. Hogan ◽  
Elizabeth J. Shpall ◽  
Oren McNulty ◽  
Ian McNiece ◽  
John E. Dick ◽  
...  

Abstract Understanding the repopulating characteristics of human hematopoietic stem/progenitor cell fractions is crucial for predicting their performance after transplant into high-risk patients following high-dose therapy. We report that human umbilical cord blood cells, 78% to 100% of which express the hematopoietic progenitor cell surface marker CD34, can consistently engraft, develop, and proliferate in the hematopoietic tissues of sublethally irradiated NOD/LtSz-scid/scid mice. Engraftment and development of CD34+ cells is not dependent on human growth factor support. CD34+ cells home to the mouse bone marrow (BM) that becomes the primary site of human hematopoietic development containing myeloid, lymphoid, erythroid, and CD34+ progenitor populations. Myeloid, and in particular lymphoid cells possessing more mature cell surface markers, comprise the human component of mouse spleen and peripheral blood, indicating that development proceeds from primary hematopoietic sites to the periphery. Repopulation of secondary recipients with human cells by BM from primary recipients demonstrates the maintenance of substantial proliferation capacity of the input precursor population. These data suggest that the cells capable of initiating human cell engraftment (SCID-repopulating cells) are contained in the CD34+ cell fraction, and that this mouse model will be useful for assaying the developmental potential of other rare human hematopoietic cell fractions in vivo.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1236-1236 ◽  
Author(s):  
Daniel Ewerth ◽  
Andrea Schmidts ◽  
Birgit Kuegelgen ◽  
Dagmar Wider ◽  
Julia Schüler ◽  
...  

Abstract Abstract 1236 Hematopoietic stem cells (HSCs) and multipotent progenitor cells continuously maintain hematopoiesis by self-renewal and differentiation to all types of blood lineages. These unique processes are regulated by intrinsic and extrinsic signals (e.g. cytokines, cell-cell contacts) and strongly connects stem cell fate with the cell cycle. The ubiquitin-proteasome system regulates spatial and temporal abundance of proteins in the cell. During cell cycle, the anaphase-promoting complex or cyclosome (APC/C) with its co-activators Cdc20 and Cdh1 marks proteins for proteasomal degradation and thus controls their activity. Known targets of Cdh1, namely Skp2 and Id2, are involved in regulation of self-renewal and granulopoiesis (Wang et al., Blood 2011; Buitenhuis et al., Blood 2005). This raises the hypothesis that Cdh1 may be a critical upstream regulator of HSC differentiation. The analysis of human bone marrow cell subsets (CD34+, lymphoid and myeloid cells) revealed highest protein level of Cdh1 in CD34+ cells, lower expression in more mature lymphoid subsets (CD3+, CD19+) and only marginal expression in mature myeloid cells (CD41a+, CD11b+). These data suggest that Cdh1 is important to induce differentiation, but dispensable for maintaining the differentiated state. In vitro cultivation of G-CSF mobilized peripheral blood CD34+ cells under conditions resulting in either self-renewal (SCF, TPO, Flt3-l) or differentiation/granulopoiesis (SCF, G-CSF) showed downregulation of Cdh1 during culture compared to d0. Western blots did not only reveal decreasing levels of Cdh1, but also its inactivation by its specific inhibitor Emi1 which stabilized the ubiquitin ligase Skp2 and promoted cell cycle entry and proliferation by degrading the cyclin-dependent-kinase inhibitor p27. In addition, the APC/CCdh1 target cyclin B was upregulated. These data indicate that initial Cdh1 downregulation is required to promote cell cycle entry and proliferation of CD34+ HSCs under conditions mediating both self-renewal as well as differentiation. To analyze cell division/proliferation and self-renewal versus differentiation more closely, we used the fluorescent dye CFSE as an indicator of cell division in combination with CD34 to indicate the differentiation status. When cultured under self-renewal conditions using SCF, TPO and Flt3-l, CD34+cells showed enhanced proliferation with increased cells in higher generations, whereas using SCF and G-CSF to induce granulopoiesis, cells within lower generations were more prominent. These experiments also revealed a rapid decrease of CD34 expression in granulopoiesis after 3 cell divisions in contrast to a moderate decline under self-renewal conditions. This is consistent with more symmetric divisions into CD34+ daughter cells under self-renewal conditions and gradual cell cycle exit and differentiation under conditions that induce granulopoiesis. To further elucidate the role of Cdh1 for stem/progenitor cell fate, we used a lentiviral knockdown of Cdh1 in CD34+ cells. After 4 days of transduction and cell sorting, the cells were cultivated for 1 week in medium containing SCF, TPO and Flt3-l. Cdh1 depleted cells showed enhanced proliferation compared to the empty vector control and a higher expression of CD34. In colony forming unit (CFU) assays, we observed that CD34+ cells with Cdh1-knockdown were less efficient to differentiate to CFU-G, CFU-M and BFU-E. A higher potential to self-renew was validated by replating of these colonies, where the number with Cdh1-knockdown increased during serial replating. To validate our results in vivo, we have established a NOD/SCID/IL-2Rγ chain−/− (NSG) xenotransplant mouse model. The evaluation of engraftment capacity and differentiation potential of human Cdh1 depleted CD34+ cells in this model is ongoing. Our data establish the central cell cycle regulator APC/CCdh1 as a novel regulator of self-renewal and differentiation in CD34+ HSCs. Disclosures: No relevant conflicts of interest to declare.


2002 ◽  
Vol 22 (8) ◽  
pp. 2830-2841 ◽  
Author(s):  
Kevin G. Leong ◽  
Xiaolong Hu ◽  
Linheng Li ◽  
Michela Noseda ◽  
Bruno Larrivée ◽  
...  

ABSTRACT Notch4 is a member of the Notch family of transmembrane receptors that is expressed primarily on endothelial cells. Activation of Notch in various cell systems has been shown to regulate cell fate decisions. The sprouting of endothelial cells from microvessels, or angiogenesis, involves the modulation of the endothelial cell phenotype. Based on the function of other Notch family members and the expression pattern of Notch4, we postulated that Notch4 activation would modulate angiogenesis. Using an in vitro endothelial-sprouting assay, we show that expression of constitutively active Notch4 in human dermal microvascular endothelial cells (HMEC-1) inhibits endothelial sprouting. We also show that activated Notch4 inhibits vascular endothelial growth factor (VEGF)-induced angiogenesis in the chick chorioallantoic membrane in vivo. Activated Notch4 does not inhibit HMEC-1 proliferation or migration through fibrinogen. However, migration through collagen is inhibited. Our data show that Notch4 cells exhibit increased β1-integrin-mediated adhesion to collagen. HMEC-1 expressing activated Notch4 do not have increased surface expression of β1-integrins. Rather, we demonstrate that Notch4-expressing cells display β1-integrin in an active, high-affinity conformation. Furthermore, using function-activating β1-integrin antibodies, we demonstrate that activation of β1-integrins is sufficient to inhibit VEGF-induced endothelial sprouting in vitro and angiogenesis in vivo. Our findings suggest that constitutive Notch4 activation in endothelial cells inhibits angiogenesis in part by promoting β1-integrin-mediated adhesion to the underlying matrix.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1444
Author(s):  
Robert H. Whitaker ◽  
Jeanette Gowen Cook

Protein signaling networks are formed from diverse and inter-connected cell signaling pathways converging into webs of function and regulation. These signaling pathways both receive and conduct molecular messages, often by a series of post-translation modifications such as phosphorylation or through protein–protein interactions via intrinsic motifs. The mitogen activated protein kinases (MAPKs) are components of kinase cascades that transmit signals through phosphorylation. There are several MAPK subfamilies, and one subfamily is the stress-activated protein kinases, which in mammals is the p38 family. The p38 enzymes mediate a variety of cellular outcomes including DNA repair, cell survival/cell fate decisions, and cell cycle arrest. The cell cycle is itself a signaling system that precisely controls DNA replication, chromosome segregation, and cellular division. Another indispensable cell function influenced by the p38 stress response is programmed cell death (apoptosis). As the regulators of cell survival, the BCL2 family of proteins and their dynamics are exquisitely sensitive to cell stress. The BCL2 family forms a protein–protein interaction network divided into anti-apoptotic and pro-apoptotic members, and the balance of binding between these two sides determines cell survival. Here, we discuss the intersections among the p38 MAPK, cell cycle, and apoptosis signaling pathways.


Author(s):  
Dmitri Serjanov ◽  
Galina Bachay ◽  
Dale D. Hunter ◽  
William J. Brunken

Vertebrate retinal development follows a highly stereotyped pattern, in which the retinal progenitor cells (RPCs) give rise to all retinal types in a conserved temporal sequence. Ensuring the proper control over RPC cell cycle exit and re-entry is, therefore, crucially important for the generation of properly functioning retina. In this study, we demonstrate that laminins, indispensible ECM components, at the retinal surface, regulate the mechanisms determining whether RPCs generate proliferative or post-mitotic progeny. In vivo deletion of laminin β2 in mice resulted in disturbing the RPC cell cycle dynamics, and premature cell cycle exit. Specifically, the RPC S-phase is shortened, with increased numbers of cells present in its late stages. This is followed by an accelerated G2-phase, leading to faster M-phase entry. Finally, the M-phase is extended, with RPCs dwelling longer in prophase. Addition of exogenous β2-containing laminins to laminin β2-deficient retinal explants restored the appropriate RPC cell cycle dynamics, as well as S and M-phase progression, leading to proper cell cycle re-entry. Moreover, we show that disruption of dystroglycan, a laminin receptor, phenocopies the laminin β2 deletion cell cycle phenotype. Together, our findings suggest that dystroglycan-mediated ECM signaling plays a critical role in regulating the RPC cell cycle dynamics, and the ensuing cell fate decisions.


Sign in / Sign up

Export Citation Format

Share Document