Mast Cell Migratory Response to Interleukin-8 Is Mediated Through Interaction With Chemokine Receptor CXCR2/Interleukin-8RB

Blood ◽  
1999 ◽  
Vol 93 (9) ◽  
pp. 2791-2797 ◽  
Author(s):  
Gunnar Nilsson ◽  
Judy A. Mikovits ◽  
Dean D. Metcalfe ◽  
Dennis D. Taub

Abstract To explore the role of chemokines in mast cell chemotaxis and accumulation at sites of inflammation, we first investigated the response of human mast cells to 18 different chemokines by induction of intracellular calcium mobilization in the human mast cell line, HMC-1. Only a subgroup of CXC chemokines defined by the conserved sequence motif glutamic acid-leucine-arginine (ELR) tripeptide motif, which included interleukin-8 (IL-8), growth-regulated oncogene  (GRO), neutrophil-activating peptide-2 (NAP-2), and epithelial cell–derived neutrophil activating peptide-78 (ENA-78), induced calcium flux in the cells. These observations suggested that the receptor CXCR2 (IL-8RB) should be expressed on the surface of these cells. Using the RNAse protection assay, CXCR2 mRNA, but not CXCR1 (IL-8RA) mRNA expression was detected in HMC-1 cells. Flow cytometry analysis documented the surface expression of CXCR2. A binding analysis performed with125I-IL-8 determined that there were approximately 3,600 high affinity IL-8 binding sites per HMC-1 cell, with a calculated kd of 1.2 to 2 nmol/L. The activity of this receptor was further explored using IL-8, which was found to induce dose-dependent chemotactic and haptotactic responses in both HMC-1 cells and in vitro cultured human cord blood–derived mast cells. These results show the expression of functional CXCR2 receptors on the surface of human mast cells, which may play an important role in mast cell recruitment during the genesis of an inflammatory response.

Blood ◽  
1999 ◽  
Vol 93 (9) ◽  
pp. 2791-2797 ◽  
Author(s):  
Gunnar Nilsson ◽  
Judy A. Mikovits ◽  
Dean D. Metcalfe ◽  
Dennis D. Taub

To explore the role of chemokines in mast cell chemotaxis and accumulation at sites of inflammation, we first investigated the response of human mast cells to 18 different chemokines by induction of intracellular calcium mobilization in the human mast cell line, HMC-1. Only a subgroup of CXC chemokines defined by the conserved sequence motif glutamic acid-leucine-arginine (ELR) tripeptide motif, which included interleukin-8 (IL-8), growth-regulated oncogene  (GRO), neutrophil-activating peptide-2 (NAP-2), and epithelial cell–derived neutrophil activating peptide-78 (ENA-78), induced calcium flux in the cells. These observations suggested that the receptor CXCR2 (IL-8RB) should be expressed on the surface of these cells. Using the RNAse protection assay, CXCR2 mRNA, but not CXCR1 (IL-8RA) mRNA expression was detected in HMC-1 cells. Flow cytometry analysis documented the surface expression of CXCR2. A binding analysis performed with125I-IL-8 determined that there were approximately 3,600 high affinity IL-8 binding sites per HMC-1 cell, with a calculated kd of 1.2 to 2 nmol/L. The activity of this receptor was further explored using IL-8, which was found to induce dose-dependent chemotactic and haptotactic responses in both HMC-1 cells and in vitro cultured human cord blood–derived mast cells. These results show the expression of functional CXCR2 receptors on the surface of human mast cells, which may play an important role in mast cell recruitment during the genesis of an inflammatory response.


2021 ◽  
Vol 11 ◽  
Author(s):  
Peter W. West ◽  
Rajia Bahri ◽  
Karen M. Garcia-Rodriguez ◽  
Georgia Sweetland ◽  
Georgia Wileman ◽  
...  

Both, aberrant mast cell responses and complement activation contribute to allergic diseases. Since mast cells are highly responsive to C3a and C5a, while Interleukin-33 (IL-33) is a potent mast cell activator, we hypothesized that IL-33 critically regulates mast cell responses to complement anaphylatoxins. We sought to understand whether C3a and C5a differentially activate primary human mast cells, and probe whether IL-33 regulates C3a/C5a-induced mast cell activities. Primary human mast cells were generated from peripheral blood precursors or isolated from healthy human lung tissue, and mast cell complement receptor expression, degranulation, mediator release, phosphorylation patterns, and calcium flux were assessed. Human mast cells of distinct origin express constitutively higher levels of C3aR1 than C5aR1, and both receptors are downregulated by anaphylatoxins. While C3a is a potent mast cell degranulation inducer, C5a is a weaker secretagogue with more delayed effects. Importantly, IL-33 potently enhances the human mast cell reactivity to C3a and C5a (degranulation, cytokine and chemokine release), independent of changes in C3a or C5a receptor expression or the level of Ca2+ influx. Instead, this reflects differential dynamics of intracellular signaling such as ERK1/2 phosphorylation. Since primary human mast cells respond differentially to anaphylatoxin stimulation, and that IL-33 is a key regulator of mast cell responses to complement anaphylatoxins, this is likely to aggravate Th2 immune responses. This newly identified cross-regulation may be important for controlling exacerbated complement- and mast cell-dependent Th2 responses and thus provides an additional rationale for targeting anti-IL33 therapeutically in allergic diseases.


Blood ◽  
1997 ◽  
Vol 90 (5) ◽  
pp. 1807-1820 ◽  
Author(s):  
See-Ying Tam ◽  
Mindy Tsai ◽  
Masao Yamaguchi ◽  
Koji Yano ◽  
Joseph H. Butterfield ◽  
...  

Abstract Nerve growth factor (NGF ) can influence mast cell development and function in murine rodents by interacting with its receptors on mast cells. We now report the identification of mRNA transcripts of full-length tyrosine kinase-containing trkA, trkB, and trkC neurotrophin receptor genes in HMC-1 human mast cell leukemia cells. Although HMC-1 cells lacked p75 mRNA, they expressed transcripts for the exon-lacking splice variant of trkA (trkAI), truncated trkB (trkB.T1), and truncated trkC. By flow cytometry, HMC-1 cells exhibited expression of TrkA, TrkB, and TrkC receptor proteins containing full-length tyrosine kinase domains. NGF stimulation of HMC-1 cells induced tyrosine phosphorylation of TrkA protein, increased expression of the early response genes c-fos and NGF1-A, and activation of ERK-mitogen–activated protein (MAP) kinase, results which indicate that TrkA receptors in HMC-1 cells are fully functional. Highly purified populations of human lung mast cells expressed mRNAs for trkA, trkB and trkC, whereas preparations of human umbilical cord blood-derived mast cells expressed mRNAs for trkA and trkC, but not trkB. Moreover, preparations of human umbilical cord blood-derived immature mast cells not only expressed mRNA transcript and protein for TrkA, but exhibited significantly higher numbers of chymase-positive cells after the addition of NGF to their culture medium for 3 weeks. In addition, HMC-1 cells expressed mRNAs for NGF, brain-derived neurotrophic factor (BDNF ), and neurotrophin-3 (NT-3), the cognate ligands for TrkA, TrkB, and TrkC, whereas NGF and BDNF transcripts were detectable in human umbilical cord blood mast cell preparations. Taken together, our findings show that human mast cells express a functional TrkA receptor tyrosine kinase and indicate that NGF may be able to promote certain aspects of mast cell development and/or maturation in humans. Our studies also raise the possibility that human mast cells may represent a potential source for neurotrophins.


Author(s):  
Tatsuki R. Kataoka ◽  
Chiyuki Ueshima ◽  
Masahiro Hirata ◽  
Sachiko Minamiguchi ◽  
Hironori Haga

Killer immunoglobulin-like receptor (KIR) 2DL4 (CD158d) was previously thought to be a human NK-cell-specific protein but its expression has also been demonstrated in human mast cells. Mast cells are involved in allergic reactions via their KIT-mediated and IgE receptor-mediated responses. We recently detected the expression of KIR2DL4 in human cultured mast cells established from peripheral blood derived from healthy volunteers (PB-mast), a human mast cell line (LAD2), and non-neoplastic mast cells, including pathological specimens. An agonistic antibody against KIR2DL4 negatively regulates the KIT- and IgE-receptor-mediated responses of PB-mast and LAD2 cells. In addition, agonistic antibodies and human leukocyte antigen (HLA)-G, a natural ligand for KIR2DL4, induce the secretion from these cells of leukemia inhibitory factor and serine proteases, which have been implicated in pregnancy establishment and cancer metastasis. Therefore, KIR2DL4 stimulation with agonistic antibodies and recombinant HLA-G protein may enhance both processes, in addition to suppressing mast-cell-mediated allergic reactions.


2002 ◽  
Vol 76 (16) ◽  
pp. 8408-8419 ◽  
Author(s):  
Christine A. King ◽  
Robert Anderson ◽  
Jean S. Marshall

ABSTRACT Severe dengue virus infections usually occur in individuals who have preexisting anti-dengue virus antibodies. Mast cells are known to play an important role in host defense against several pathogens, but their role in viral infection has not yet been elucidated. The effects of dengue virus infection on the production of chemokines by human mast cells were examined. Elevated levels of secreted RANTES, MIP-1α, and MIP-1β, but not IL-8 or ENA-78, were observed following infection of KU812 or HMC-1 human mast cell-basophil lines. In some cases a >200-fold increase in RANTES production was observed. Cord blood-derived cultured human mast cells treated with dengue virus in the presence of subneutralizing concentrations of dengue virus-specific antibody also demonstrated significantly (P < 0.05) increased RANTES production, under conditions which did not induce significant degranulation. Chemokine responses were not observed when mast cells were treated with UV-inactivated dengue virus in the presence or absence of human dengue virus-specific antibody. Neither antibody-enhanced dengue virus infection of the highly permissive U937 monocytic cell line nor adenovirus infection of mast cells induced a RANTES, MIP-1α, or MIP-1β response, demonstrating a selective mast cell response to dengue virus. These results suggest a role for mast cells in the initiation of chemokine-dependent host responses to dengue virus infection.


Blood ◽  
1983 ◽  
Vol 62 (6) ◽  
pp. 1251-1260 ◽  
Author(s):  
MA Horton ◽  
HA O'Brien

Abstract Recent studies in rodents have demonstrated that mast cells derived from lymphoid tissues can be grown in longterm culture, provided that supportive growth factors or stromal fibroblasts are added; such findings have not been reported in man. Furthermore, although a hemopoietic origin for mast cells is supported by transplantation studies in mice, the exact origin of the human mast cell or its relationship to the circulating basophil and other hemopoietic cell lineages is unknown. We have investigated the requirements for in vitro growth of human mast cells derived from the infiltrated bone marrow of a patient with systemic mastocytosis, and have characterized both the mast cells proliferating in these cultures and those obtained from splenic infiltrates. Our data approached two questions: (1) Is there any evidence for the origin of mast cells from a bone-marrow-derived stem cell, and, if so, (2) what lineage relationship is there between mast cells and granulopoietic cells, including basophils? First, we have shown the expression of hemopoietic tissue-specific antigens by mast cells, strongly supporting a bone marrow origin for the mast cell in man (at least for those mast cells analyzed here). Second, the complete lack of granulocyte-monocyte markers contrasts with the phenotype of the basophil and suggests that mast cells diverge considerably from other granulopoietic cells during the acquisition of their differentiated specialized functions.


2020 ◽  
Vol 21 (3) ◽  
pp. 954 ◽  
Author(s):  
Tatsuki R. Kataoka ◽  
Chiyuki Ueshima ◽  
Masahiro Hirata ◽  
Sachiko Minamiguchi ◽  
Hironori Haga

Killer immunoglobulin-like receptor (KIR) 2DL4 (CD158d) was previously thought to be a human NK cell-specific protein. Mast cells are involved in allergic reactions via their KIT-mediated and FcɛRI-mediated responses. We recently detected the expression of KIR2DL4 in human cultured mast cells established from peripheral blood of healthy volunteers (PB-mast), in the human mast cell line LAD2, and in human tissue mast cells. Agonistic antibodies against KIR2DL4 negatively regulate the KIT-mediated and FcɛRI-mediated responses of PB-mast and LAD2 cells. In addition, agonistic antibodies and human leukocyte antigen (HLA)-G, a natural ligand for KIR2DL4, induce the secretion of leukemia inhibitory factor and serine proteases from human mast cells, which have been implicated in pregnancy establishment and cancer metastasis. Therefore, KIR2DL4 stimulation with agonistic antibodies and recombinant HLA-G protein may enhance both processes, in addition to suppressing mast-cell-mediated allergic reactions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maud A. W. Hermans ◽  
Astrid C. van Stigt ◽  
Sanne van de Meerendonk ◽  
Benjamin Schrijver ◽  
Paul L. A. van Daele ◽  
...  

The Mas-related G-protein-coupled receptor X2 (MRGPRX2) is prominently expressed by mast cells and induces degranulation upon binding by different ligands. Its activation has been linked to various mast cell-related diseases, such as chronic spontaneous urticaria, atopic dermatitis and asthma. Therefore, inhibition of MRGPRX2 activity represents a therapeutic target for these conditions. However, the exact pathophysiology of this receptor is still unknown. In vitro research with mast cells is often hampered by the technical limitations of available cell lines. The human mast cell types LAD2 and HuMC (human mast cells cultured from CD34+ progenitor cells) most closely resemble mature human mast cells, yet have a very slow growth rate. A fast proliferating alternative is the human mast cell line HMC1, but they are considered unsuitable for degranulation assays due to their immature phenotype. Moreover, the expression and functionality of MRGPRX2 on HMC1 is controversial. Here, we describe the MRGPRX2 expression and functionality in HMC1 cells, and compare these with LAD2 and HuMC. We also propose a model to render HMC1 suitable for degranulation assays by pre-incubating them with latrunculin-B (Lat-B). Expression of MRGPRX2 by HMC1 was proven by RQ-PCR and flowcytometry, although at lower levels compared with LAD2 and HuMC. Pre-incubation of HMC1 cells with Lat-B significantly increased the overall degranulation capacity, without significantly changing their MRGPRX2 expression, phenotype or morphology. The MRGPRX2 specific compound 48/80 (C48/80) effectively induced degranulation of HMC1 as measured by CD63 membrane expression and β-hexosaminidase release, albeit in lower levels than for LAD2 or HuMC. HMC1, LAD2 and HuMC each had different degranulation kinetics upon stimulation with C48/80. Incubation with the MRGPRX2 specific inhibitor QWF inhibited C48/80-induced degranulation, confirming the functionality of MRGPRX2 on HMC1. In conclusion, HMC1 cells have lower levels of MRGPRX2 expression than LAD2 or HuMC, but are attractive for in vitro research because of their high growth rate and stable phenotype. HMC1 can be used to study MRGPRX2-mediated degranulation after pre-incubation with Lat-B, which provides the opportunity to explore MPRGRX2 biology in mast cells in a feasible way.


Blood ◽  
1983 ◽  
Vol 62 (6) ◽  
pp. 1251-1260
Author(s):  
MA Horton ◽  
HA O'Brien

Recent studies in rodents have demonstrated that mast cells derived from lymphoid tissues can be grown in longterm culture, provided that supportive growth factors or stromal fibroblasts are added; such findings have not been reported in man. Furthermore, although a hemopoietic origin for mast cells is supported by transplantation studies in mice, the exact origin of the human mast cell or its relationship to the circulating basophil and other hemopoietic cell lineages is unknown. We have investigated the requirements for in vitro growth of human mast cells derived from the infiltrated bone marrow of a patient with systemic mastocytosis, and have characterized both the mast cells proliferating in these cultures and those obtained from splenic infiltrates. Our data approached two questions: (1) Is there any evidence for the origin of mast cells from a bone-marrow-derived stem cell, and, if so, (2) what lineage relationship is there between mast cells and granulopoietic cells, including basophils? First, we have shown the expression of hemopoietic tissue-specific antigens by mast cells, strongly supporting a bone marrow origin for the mast cell in man (at least for those mast cells analyzed here). Second, the complete lack of granulocyte-monocyte markers contrasts with the phenotype of the basophil and suggests that mast cells diverge considerably from other granulopoietic cells during the acquisition of their differentiated specialized functions.


Development ◽  
1995 ◽  
Vol 121 (1) ◽  
pp. 163-172 ◽  
Author(s):  
L. Pevny ◽  
C.S. Lin ◽  
V. D'Agati ◽  
M.C. Simon ◽  
S.H. Orkin ◽  
...  

GATA-1 is a zinc-finger transcription factor believed to play an important role in gene regulation during the development of erythroid cells, megakaryocytes and mast cells. Other members of the GATA family, which can bind to the same DNA sequence motif, are co-expressed in several of these hemopoietic lineages, raising the possibility of overlap in function. To examine the specific roles of GATA-1 in hematopoietic cell differentiation, we have tested the ability of embryonic stem cells, carrying a targeted mutation in the X-linked GATA-1 gene, to contribute to various blood cell types when used to produce chimeric embryos or mice. Previously, we reported that GATA-1- mutant cells failed to contribute to the mature red blood cell population, indicating a requirement for this factor at some point in the erythroid lineage (L. Pevny et al., (1991) Nature 349, 257–260). In this study, we have used in vitro colony assays to identify the stage at which mutant erythroid cells are affected, and to examine the requirement for GATA-1 in other lineages. We found that the development of erythroid progenitors in embryonic yolk sacs was unaffected by the mutation, but that the cells failed to mature beyond the proerythroblast stage, an early point in terminal differentiation. GATA-1- colonies contained phenotypically normal macrophages, neutrophils and megakaryocytes, indicating that GATA-1 is not required for the in vitro differentiation of cells in these lineages. GATA-1- megakaryocytes were abnormally abundant in chimeric fetal livers, suggesting an alteration in the kinetics of their formation or turnover. The lack of a block in terminal megakaryocyte differentiation was shown by the in vivo production of platelets expressing the ES cell-derived GPI-1C isozyme. The role of GATA-1 in mast cell differentiation was examined by the isolation of clonal mast cell cultures from chimeric fetal livers. Mutant and wild-type mast cells displayed similar growth and histochemical staining properties after culture under conditions that promote the differentiation of cells resembling mucosal or serosal mast cells. Thus, the mast and megakaryocyte lineages, in which GATA-1 and GATA-2 are co-expressed, can complete their maturation in the absence of GATA-1, while erythroid cells, in which GATA-1 is the predominant GATA factor, are blocked at a relatively early stage of maturation.


Sign in / Sign up

Export Citation Format

Share Document