scholarly journals Killer Immunoglobulin-Like Receptor 2DL4 (CD158d) Regulates Human Mast Cells both Positively and Negatively: Possible Roles in Pregnancy and Cancer Metastasis

2020 ◽  
Vol 21 (3) ◽  
pp. 954 ◽  
Author(s):  
Tatsuki R. Kataoka ◽  
Chiyuki Ueshima ◽  
Masahiro Hirata ◽  
Sachiko Minamiguchi ◽  
Hironori Haga

Killer immunoglobulin-like receptor (KIR) 2DL4 (CD158d) was previously thought to be a human NK cell-specific protein. Mast cells are involved in allergic reactions via their KIT-mediated and FcɛRI-mediated responses. We recently detected the expression of KIR2DL4 in human cultured mast cells established from peripheral blood of healthy volunteers (PB-mast), in the human mast cell line LAD2, and in human tissue mast cells. Agonistic antibodies against KIR2DL4 negatively regulate the KIT-mediated and FcɛRI-mediated responses of PB-mast and LAD2 cells. In addition, agonistic antibodies and human leukocyte antigen (HLA)-G, a natural ligand for KIR2DL4, induce the secretion of leukemia inhibitory factor and serine proteases from human mast cells, which have been implicated in pregnancy establishment and cancer metastasis. Therefore, KIR2DL4 stimulation with agonistic antibodies and recombinant HLA-G protein may enhance both processes, in addition to suppressing mast-cell-mediated allergic reactions.

Author(s):  
Tatsuki R. Kataoka ◽  
Chiyuki Ueshima ◽  
Masahiro Hirata ◽  
Sachiko Minamiguchi ◽  
Hironori Haga

Killer immunoglobulin-like receptor (KIR) 2DL4 (CD158d) was previously thought to be a human NK-cell-specific protein but its expression has also been demonstrated in human mast cells. Mast cells are involved in allergic reactions via their KIT-mediated and IgE receptor-mediated responses. We recently detected the expression of KIR2DL4 in human cultured mast cells established from peripheral blood derived from healthy volunteers (PB-mast), a human mast cell line (LAD2), and non-neoplastic mast cells, including pathological specimens. An agonistic antibody against KIR2DL4 negatively regulates the KIT- and IgE-receptor-mediated responses of PB-mast and LAD2 cells. In addition, agonistic antibodies and human leukocyte antigen (HLA)-G, a natural ligand for KIR2DL4, induce the secretion from these cells of leukemia inhibitory factor and serine proteases, which have been implicated in pregnancy establishment and cancer metastasis. Therefore, KIR2DL4 stimulation with agonistic antibodies and recombinant HLA-G protein may enhance both processes, in addition to suppressing mast-cell-mediated allergic reactions.


Blood ◽  
1997 ◽  
Vol 90 (5) ◽  
pp. 1807-1820 ◽  
Author(s):  
See-Ying Tam ◽  
Mindy Tsai ◽  
Masao Yamaguchi ◽  
Koji Yano ◽  
Joseph H. Butterfield ◽  
...  

Abstract Nerve growth factor (NGF ) can influence mast cell development and function in murine rodents by interacting with its receptors on mast cells. We now report the identification of mRNA transcripts of full-length tyrosine kinase-containing trkA, trkB, and trkC neurotrophin receptor genes in HMC-1 human mast cell leukemia cells. Although HMC-1 cells lacked p75 mRNA, they expressed transcripts for the exon-lacking splice variant of trkA (trkAI), truncated trkB (trkB.T1), and truncated trkC. By flow cytometry, HMC-1 cells exhibited expression of TrkA, TrkB, and TrkC receptor proteins containing full-length tyrosine kinase domains. NGF stimulation of HMC-1 cells induced tyrosine phosphorylation of TrkA protein, increased expression of the early response genes c-fos and NGF1-A, and activation of ERK-mitogen–activated protein (MAP) kinase, results which indicate that TrkA receptors in HMC-1 cells are fully functional. Highly purified populations of human lung mast cells expressed mRNAs for trkA, trkB and trkC, whereas preparations of human umbilical cord blood-derived mast cells expressed mRNAs for trkA and trkC, but not trkB. Moreover, preparations of human umbilical cord blood-derived immature mast cells not only expressed mRNA transcript and protein for TrkA, but exhibited significantly higher numbers of chymase-positive cells after the addition of NGF to their culture medium for 3 weeks. In addition, HMC-1 cells expressed mRNAs for NGF, brain-derived neurotrophic factor (BDNF ), and neurotrophin-3 (NT-3), the cognate ligands for TrkA, TrkB, and TrkC, whereas NGF and BDNF transcripts were detectable in human umbilical cord blood mast cell preparations. Taken together, our findings show that human mast cells express a functional TrkA receptor tyrosine kinase and indicate that NGF may be able to promote certain aspects of mast cell development and/or maturation in humans. Our studies also raise the possibility that human mast cells may represent a potential source for neurotrophins.


2002 ◽  
Vol 76 (16) ◽  
pp. 8408-8419 ◽  
Author(s):  
Christine A. King ◽  
Robert Anderson ◽  
Jean S. Marshall

ABSTRACT Severe dengue virus infections usually occur in individuals who have preexisting anti-dengue virus antibodies. Mast cells are known to play an important role in host defense against several pathogens, but their role in viral infection has not yet been elucidated. The effects of dengue virus infection on the production of chemokines by human mast cells were examined. Elevated levels of secreted RANTES, MIP-1α, and MIP-1β, but not IL-8 or ENA-78, were observed following infection of KU812 or HMC-1 human mast cell-basophil lines. In some cases a >200-fold increase in RANTES production was observed. Cord blood-derived cultured human mast cells treated with dengue virus in the presence of subneutralizing concentrations of dengue virus-specific antibody also demonstrated significantly (P < 0.05) increased RANTES production, under conditions which did not induce significant degranulation. Chemokine responses were not observed when mast cells were treated with UV-inactivated dengue virus in the presence or absence of human dengue virus-specific antibody. Neither antibody-enhanced dengue virus infection of the highly permissive U937 monocytic cell line nor adenovirus infection of mast cells induced a RANTES, MIP-1α, or MIP-1β response, demonstrating a selective mast cell response to dengue virus. These results suggest a role for mast cells in the initiation of chemokine-dependent host responses to dengue virus infection.


2013 ◽  
Vol 41 (06) ◽  
pp. 1267-1282 ◽  
Author(s):  
Phil-Dong Moon ◽  
Il Sang Choi ◽  
Ji-Hyun Go ◽  
Byong-Joo Lee ◽  
Sang Woo Kang ◽  
...  

BiRyuChe-bang (BRC) is a Korean prescription medicine, which has been used to treat allergic rhinitis at Kyung Hee Medical Center. In this work, we investigated the effects of BRC on mast cell-mediated allergic reactions and inflammatory cytokines production, and identified the active component of BRC. Histamine release was measured from rat peritoneal mast cells (RPMCs). Ear swelling and passive cutaneous anaphylaxis (PCA) were examined in mouse models. Phorbol 12-myristate 13-acetate (PMA) plus A23187-induced inflammatory cytokines production was measured using enzyme-linked immunosorbent assay. Reverse transcriptase-polymerase chain reaction was used for the expressions of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-8. Activation of nuclear factor (NF)-κB was analyzed by Western blotting. BRC significantly inhibited the compound 48/80-induced ear swelling response, histamine release from RPMCs, PCA activated by anti-dinitrophenyl IgE, and PMA plus A23187-induced inflammatory cytokines production (p < 0.05). In addition, BRC dose-dependently inhibited the mRNA expressions of TNF-α, IL-6, and IL-8 as well as the activation of NF-κB in a human mast cell line, HMC-1 cells. BRC inhibited the levels of TNF-α and IL-6 in mice induced with PCA. Several components of BRC, such as 1,8-Cineole, Linalool, Linalyl acetate, α-Pinene, and α-Terpineol, significantly inhibited the release of histamine from RPMCs (p < 0.05). Among these components, Linalyl acetate was the most effective for inhibiting histamine release. These results indicate that BRC has a potential regulatory effect on allergic and inflammatory reactions mediated by mast cells.


Blood ◽  
2008 ◽  
Vol 111 (12) ◽  
pp. 5467-5476 ◽  
Author(s):  
Sarah M. Burke ◽  
Thomas B. Issekutz ◽  
Karkada Mohan ◽  
Patrick W. K. Lee ◽  
Maya Shmulevitz ◽  
...  

AbstractHuman mast cells are found in skin and mucosal surfaces and next to blood vessels. They play a sentinel cell role in immunity, recognizing invading pathogens and producing proinflammatory mediators. Mast cells can recruit granulocytes, and monocytes in allergic disease and bacterial infection, but their ability to recruit antiviral effector cells such as natural killer (NK) cells and T cells has not been fully elucidated. To investigate the role of human mast cells in response to virus-associated stimuli, human cord blood–derived mast cells (CBMCs) were stimulated with polyinosinic·polycytidylic acid, a double-stranded RNA analog, or infected with the double-stranded RNA virus, reovirus serotype 3 Dearing for 24 hours. CBMCs responded to stimulation with polyinosinic·polycytidylic acid by producing a distinct chemokine profile, including CCL4, CXCL8, and CXCL10. CBMCs produced significant amounts of CXCL8 in response to low levels of reovirus infection, while both skin- and lung-derived fibroblasts were unresponsive unless higher doses of reovirus were used. Supernatants from CBMCs infected with reovirus induced substantial NK cell chemotaxis that was highly dependent on CXCL8 and CXCR1. These results suggest a novel role for mast cells in the recruitment of human NK cells to sites of early viral infection via CXCL8.


Blood ◽  
1999 ◽  
Vol 93 (9) ◽  
pp. 2791-2797 ◽  
Author(s):  
Gunnar Nilsson ◽  
Judy A. Mikovits ◽  
Dean D. Metcalfe ◽  
Dennis D. Taub

To explore the role of chemokines in mast cell chemotaxis and accumulation at sites of inflammation, we first investigated the response of human mast cells to 18 different chemokines by induction of intracellular calcium mobilization in the human mast cell line, HMC-1. Only a subgroup of CXC chemokines defined by the conserved sequence motif glutamic acid-leucine-arginine (ELR) tripeptide motif, which included interleukin-8 (IL-8), growth-regulated oncogene  (GRO), neutrophil-activating peptide-2 (NAP-2), and epithelial cell–derived neutrophil activating peptide-78 (ENA-78), induced calcium flux in the cells. These observations suggested that the receptor CXCR2 (IL-8RB) should be expressed on the surface of these cells. Using the RNAse protection assay, CXCR2 mRNA, but not CXCR1 (IL-8RA) mRNA expression was detected in HMC-1 cells. Flow cytometry analysis documented the surface expression of CXCR2. A binding analysis performed with125I-IL-8 determined that there were approximately 3,600 high affinity IL-8 binding sites per HMC-1 cell, with a calculated kd of 1.2 to 2 nmol/L. The activity of this receptor was further explored using IL-8, which was found to induce dose-dependent chemotactic and haptotactic responses in both HMC-1 cells and in vitro cultured human cord blood–derived mast cells. These results show the expression of functional CXCR2 receptors on the surface of human mast cells, which may play an important role in mast cell recruitment during the genesis of an inflammatory response.


Blood ◽  
1983 ◽  
Vol 62 (6) ◽  
pp. 1251-1260 ◽  
Author(s):  
MA Horton ◽  
HA O'Brien

Abstract Recent studies in rodents have demonstrated that mast cells derived from lymphoid tissues can be grown in longterm culture, provided that supportive growth factors or stromal fibroblasts are added; such findings have not been reported in man. Furthermore, although a hemopoietic origin for mast cells is supported by transplantation studies in mice, the exact origin of the human mast cell or its relationship to the circulating basophil and other hemopoietic cell lineages is unknown. We have investigated the requirements for in vitro growth of human mast cells derived from the infiltrated bone marrow of a patient with systemic mastocytosis, and have characterized both the mast cells proliferating in these cultures and those obtained from splenic infiltrates. Our data approached two questions: (1) Is there any evidence for the origin of mast cells from a bone-marrow-derived stem cell, and, if so, (2) what lineage relationship is there between mast cells and granulopoietic cells, including basophils? First, we have shown the expression of hemopoietic tissue-specific antigens by mast cells, strongly supporting a bone marrow origin for the mast cell in man (at least for those mast cells analyzed here). Second, the complete lack of granulocyte-monocyte markers contrasts with the phenotype of the basophil and suggests that mast cells diverge considerably from other granulopoietic cells during the acquisition of their differentiated specialized functions.


2016 ◽  
Vol 9 (1) ◽  
pp. 94-108 ◽  
Author(s):  
Liliana Portales-Cervantes ◽  
Ian D. Haidl ◽  
Patrick W. Lee ◽  
Jean S. Marshall

Mucosal surfaces are protected from infection by both structural and sentinel cells, such as mast cells. The mast cell's role in antiviral responses is poorly understood; however, they selectively recruit natural killer (NK) cells following infection. Here, the ability of virus-infected mast cells to enhance NK cell functions was examined. Cord blood-derived human mast cells infected with reovirus (Reo-CBMC) and subsequent mast cell products were used for the stimulation of human NK cells. NK cells upregulated the CD69 molecule and cytotoxicity-related genes, and demonstrated increased cytotoxic activity in response to Reo-CBMC soluble products. NK cell interferon (IFN)-γ production was also promoted in the presence of interleukin (IL)-18. In vivo, SCID mice injected with Reo-CBMC in a subcutaneous Matrigel model, could recruit and activate murine NK cells, a property not shared by normal human fibroblasts. Soluble products of Reo-CBMC included IL-10, TNF, type I and type III IFNs. Blockade of the type I IFN receptor abrogated NK cell activation. Furthermore, reovirus-infected mast cells expressed multiple IFN-α subtypes not observed in reovirus-infected fibroblasts or epithelial cells. Our data define an important mast cell IFN response, not shared by structural cells, and a subsequent novel mast cell-NK cell immune axis in human antiviral host defense.


2021 ◽  
Vol 11 ◽  
Author(s):  
Peter W. West ◽  
Rajia Bahri ◽  
Karen M. Garcia-Rodriguez ◽  
Georgia Sweetland ◽  
Georgia Wileman ◽  
...  

Both, aberrant mast cell responses and complement activation contribute to allergic diseases. Since mast cells are highly responsive to C3a and C5a, while Interleukin-33 (IL-33) is a potent mast cell activator, we hypothesized that IL-33 critically regulates mast cell responses to complement anaphylatoxins. We sought to understand whether C3a and C5a differentially activate primary human mast cells, and probe whether IL-33 regulates C3a/C5a-induced mast cell activities. Primary human mast cells were generated from peripheral blood precursors or isolated from healthy human lung tissue, and mast cell complement receptor expression, degranulation, mediator release, phosphorylation patterns, and calcium flux were assessed. Human mast cells of distinct origin express constitutively higher levels of C3aR1 than C5aR1, and both receptors are downregulated by anaphylatoxins. While C3a is a potent mast cell degranulation inducer, C5a is a weaker secretagogue with more delayed effects. Importantly, IL-33 potently enhances the human mast cell reactivity to C3a and C5a (degranulation, cytokine and chemokine release), independent of changes in C3a or C5a receptor expression or the level of Ca2+ influx. Instead, this reflects differential dynamics of intracellular signaling such as ERK1/2 phosphorylation. Since primary human mast cells respond differentially to anaphylatoxin stimulation, and that IL-33 is a key regulator of mast cell responses to complement anaphylatoxins, this is likely to aggravate Th2 immune responses. This newly identified cross-regulation may be important for controlling exacerbated complement- and mast cell-dependent Th2 responses and thus provides an additional rationale for targeting anti-IL33 therapeutically in allergic diseases.


Blood ◽  
1999 ◽  
Vol 93 (9) ◽  
pp. 2791-2797 ◽  
Author(s):  
Gunnar Nilsson ◽  
Judy A. Mikovits ◽  
Dean D. Metcalfe ◽  
Dennis D. Taub

Abstract To explore the role of chemokines in mast cell chemotaxis and accumulation at sites of inflammation, we first investigated the response of human mast cells to 18 different chemokines by induction of intracellular calcium mobilization in the human mast cell line, HMC-1. Only a subgroup of CXC chemokines defined by the conserved sequence motif glutamic acid-leucine-arginine (ELR) tripeptide motif, which included interleukin-8 (IL-8), growth-regulated oncogene  (GRO), neutrophil-activating peptide-2 (NAP-2), and epithelial cell–derived neutrophil activating peptide-78 (ENA-78), induced calcium flux in the cells. These observations suggested that the receptor CXCR2 (IL-8RB) should be expressed on the surface of these cells. Using the RNAse protection assay, CXCR2 mRNA, but not CXCR1 (IL-8RA) mRNA expression was detected in HMC-1 cells. Flow cytometry analysis documented the surface expression of CXCR2. A binding analysis performed with125I-IL-8 determined that there were approximately 3,600 high affinity IL-8 binding sites per HMC-1 cell, with a calculated kd of 1.2 to 2 nmol/L. The activity of this receptor was further explored using IL-8, which was found to induce dose-dependent chemotactic and haptotactic responses in both HMC-1 cells and in vitro cultured human cord blood–derived mast cells. These results show the expression of functional CXCR2 receptors on the surface of human mast cells, which may play an important role in mast cell recruitment during the genesis of an inflammatory response.


Sign in / Sign up

Export Citation Format

Share Document