scholarly journals Interleukin-33 Amplifies Human Mast Cell Activities Induced by Complement Anaphylatoxins

2021 ◽  
Vol 11 ◽  
Author(s):  
Peter W. West ◽  
Rajia Bahri ◽  
Karen M. Garcia-Rodriguez ◽  
Georgia Sweetland ◽  
Georgia Wileman ◽  
...  

Both, aberrant mast cell responses and complement activation contribute to allergic diseases. Since mast cells are highly responsive to C3a and C5a, while Interleukin-33 (IL-33) is a potent mast cell activator, we hypothesized that IL-33 critically regulates mast cell responses to complement anaphylatoxins. We sought to understand whether C3a and C5a differentially activate primary human mast cells, and probe whether IL-33 regulates C3a/C5a-induced mast cell activities. Primary human mast cells were generated from peripheral blood precursors or isolated from healthy human lung tissue, and mast cell complement receptor expression, degranulation, mediator release, phosphorylation patterns, and calcium flux were assessed. Human mast cells of distinct origin express constitutively higher levels of C3aR1 than C5aR1, and both receptors are downregulated by anaphylatoxins. While C3a is a potent mast cell degranulation inducer, C5a is a weaker secretagogue with more delayed effects. Importantly, IL-33 potently enhances the human mast cell reactivity to C3a and C5a (degranulation, cytokine and chemokine release), independent of changes in C3a or C5a receptor expression or the level of Ca2+ influx. Instead, this reflects differential dynamics of intracellular signaling such as ERK1/2 phosphorylation. Since primary human mast cells respond differentially to anaphylatoxin stimulation, and that IL-33 is a key regulator of mast cell responses to complement anaphylatoxins, this is likely to aggravate Th2 immune responses. This newly identified cross-regulation may be important for controlling exacerbated complement- and mast cell-dependent Th2 responses and thus provides an additional rationale for targeting anti-IL33 therapeutically in allergic diseases.

2018 ◽  
Author(s):  
Elin Rönnberg ◽  
Avan Ghaib ◽  
Carlos Ceriol ◽  
Mattias Enoksson ◽  
Michel Arock ◽  
...  

AbstractBackgroundEpithelial cytokines, including IL-33 and TSLP, have attracted interest because of their roles in chronic allergic inflammation-related conditions such as asthma. Mast cells are one of the major targets of IL-33, to which they respond by secreting cytokines. Most studies performed thus far have investigated the acute effects of IL-33 on mast cells.ObjectiveThe objective of this study is to investigate how acute versus prolonged exposure of human mast cells to IL-33 and TSLP affects mediator synthesis and IgE-mediated activation.MethodsHuman lung mast cells (HLMCs), cord blood-derived mast cells (CBMCs), and the ROSA mast cell line were used for this study. Surface receptor expression and the levels of mediators were measured after treatment with IL-33 and/or TSLP.ResultsIL-33 induced the acute release of cytokines. Prolonged exposure to IL-33 increased while TSLP reduced intracellular levels of tryptase. Acute IL-33 treatment strongly potentiated IgE-mediated activation. In contrast, four days of exposure to IL-33 decreased IgE-mediated activation, an effect that was accompanied by a reduction in FcεRI expression.Conclusion & Clinical RelevanceWe show that IL-33 plays dual roles for mast cell functions. The acute effect includes cytokine release and the potentiation of IgE-mediated degranulation, whereas prolonged exposure to IL-33 reduces IgE-mediated activation. We conclude that mast cells act quickly in response to the alarmin IL-33 to initiate an acute inflammatory response, whereas extended exposure to IL-33 during prolonged inflammation reduces IgE-mediated responses. This negative feedback effect suggests the presence of a novel IL-33 mediated regulatory pathway that modulates IgE-induced human mast cell responses.


Blood ◽  
1999 ◽  
Vol 93 (9) ◽  
pp. 2791-2797 ◽  
Author(s):  
Gunnar Nilsson ◽  
Judy A. Mikovits ◽  
Dean D. Metcalfe ◽  
Dennis D. Taub

To explore the role of chemokines in mast cell chemotaxis and accumulation at sites of inflammation, we first investigated the response of human mast cells to 18 different chemokines by induction of intracellular calcium mobilization in the human mast cell line, HMC-1. Only a subgroup of CXC chemokines defined by the conserved sequence motif glutamic acid-leucine-arginine (ELR) tripeptide motif, which included interleukin-8 (IL-8), growth-regulated oncogene  (GRO), neutrophil-activating peptide-2 (NAP-2), and epithelial cell–derived neutrophil activating peptide-78 (ENA-78), induced calcium flux in the cells. These observations suggested that the receptor CXCR2 (IL-8RB) should be expressed on the surface of these cells. Using the RNAse protection assay, CXCR2 mRNA, but not CXCR1 (IL-8RA) mRNA expression was detected in HMC-1 cells. Flow cytometry analysis documented the surface expression of CXCR2. A binding analysis performed with125I-IL-8 determined that there were approximately 3,600 high affinity IL-8 binding sites per HMC-1 cell, with a calculated kd of 1.2 to 2 nmol/L. The activity of this receptor was further explored using IL-8, which was found to induce dose-dependent chemotactic and haptotactic responses in both HMC-1 cells and in vitro cultured human cord blood–derived mast cells. These results show the expression of functional CXCR2 receptors on the surface of human mast cells, which may play an important role in mast cell recruitment during the genesis of an inflammatory response.


Blood ◽  
1999 ◽  
Vol 93 (9) ◽  
pp. 2791-2797 ◽  
Author(s):  
Gunnar Nilsson ◽  
Judy A. Mikovits ◽  
Dean D. Metcalfe ◽  
Dennis D. Taub

Abstract To explore the role of chemokines in mast cell chemotaxis and accumulation at sites of inflammation, we first investigated the response of human mast cells to 18 different chemokines by induction of intracellular calcium mobilization in the human mast cell line, HMC-1. Only a subgroup of CXC chemokines defined by the conserved sequence motif glutamic acid-leucine-arginine (ELR) tripeptide motif, which included interleukin-8 (IL-8), growth-regulated oncogene  (GRO), neutrophil-activating peptide-2 (NAP-2), and epithelial cell–derived neutrophil activating peptide-78 (ENA-78), induced calcium flux in the cells. These observations suggested that the receptor CXCR2 (IL-8RB) should be expressed on the surface of these cells. Using the RNAse protection assay, CXCR2 mRNA, but not CXCR1 (IL-8RA) mRNA expression was detected in HMC-1 cells. Flow cytometry analysis documented the surface expression of CXCR2. A binding analysis performed with125I-IL-8 determined that there were approximately 3,600 high affinity IL-8 binding sites per HMC-1 cell, with a calculated kd of 1.2 to 2 nmol/L. The activity of this receptor was further explored using IL-8, which was found to induce dose-dependent chemotactic and haptotactic responses in both HMC-1 cells and in vitro cultured human cord blood–derived mast cells. These results show the expression of functional CXCR2 receptors on the surface of human mast cells, which may play an important role in mast cell recruitment during the genesis of an inflammatory response.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shotaro Nakajima ◽  
Kayoko Ishimaru ◽  
Anna Kobayashi ◽  
Guannan Yu ◽  
Yuki Nakamura ◽  
...  

AbstractInterleukin-33 (IL-33)/ST2–mediated mast cell activation plays important roles in the pathophysiology of allergic diseases. Hence, pharmacologically targeting the IL-33/ST2 pathway in mast cells could help to treat such diseases. We found that resveratrol inhibits IL-33/ST2–mediated mast cell activation. Resveratrol suppressed IL-33–induced IL-6, IL-13, and TNF-α production in mouse bone marrow–derived mast cells (BMMCs), mouse fetal skin–derived mast cells, and human basophils. Resveratrol also attenuated cytokine expression induced by intranasal administration of IL-33 in mouse lung. IL-33–mediated cytokine production in mast cells requires activation of the NF-κB and MAPK p38–MAPK-activated protein kinase-2/3 (MK2/3)–PI3K/Akt pathway, and resveratrol clearly inhibited IL-33–induced activation of the MK2/3–PI3K/Akt pathway, but not the NF-κB pathway, without affecting p38 in BMMCs. Importantly, resveratrol inhibited the kinase activity of MK2, and an MK2/3 inhibitor recapitulated the suppressive effects of resveratrol. Resveratrol and an MK2/3 inhibitor also inhibited IgE-dependent degranulation and cytokine production in BMMCs, concomitant with suppression of the MK2/3–PI3K/Akt pathway. These findings indicate that resveratrol inhibits both IL-33/ST2–mediated and IgE-dependent mast cell activation principally by targeting the MK2/3–PI3K/Akt axis downstream of p38. Thus, resveratrol may have potential for the prevention and treatment of broad ranges of allergic diseases.


Blood ◽  
1997 ◽  
Vol 90 (5) ◽  
pp. 1807-1820 ◽  
Author(s):  
See-Ying Tam ◽  
Mindy Tsai ◽  
Masao Yamaguchi ◽  
Koji Yano ◽  
Joseph H. Butterfield ◽  
...  

Abstract Nerve growth factor (NGF ) can influence mast cell development and function in murine rodents by interacting with its receptors on mast cells. We now report the identification of mRNA transcripts of full-length tyrosine kinase-containing trkA, trkB, and trkC neurotrophin receptor genes in HMC-1 human mast cell leukemia cells. Although HMC-1 cells lacked p75 mRNA, they expressed transcripts for the exon-lacking splice variant of trkA (trkAI), truncated trkB (trkB.T1), and truncated trkC. By flow cytometry, HMC-1 cells exhibited expression of TrkA, TrkB, and TrkC receptor proteins containing full-length tyrosine kinase domains. NGF stimulation of HMC-1 cells induced tyrosine phosphorylation of TrkA protein, increased expression of the early response genes c-fos and NGF1-A, and activation of ERK-mitogen–activated protein (MAP) kinase, results which indicate that TrkA receptors in HMC-1 cells are fully functional. Highly purified populations of human lung mast cells expressed mRNAs for trkA, trkB and trkC, whereas preparations of human umbilical cord blood-derived mast cells expressed mRNAs for trkA and trkC, but not trkB. Moreover, preparations of human umbilical cord blood-derived immature mast cells not only expressed mRNA transcript and protein for TrkA, but exhibited significantly higher numbers of chymase-positive cells after the addition of NGF to their culture medium for 3 weeks. In addition, HMC-1 cells expressed mRNAs for NGF, brain-derived neurotrophic factor (BDNF ), and neurotrophin-3 (NT-3), the cognate ligands for TrkA, TrkB, and TrkC, whereas NGF and BDNF transcripts were detectable in human umbilical cord blood mast cell preparations. Taken together, our findings show that human mast cells express a functional TrkA receptor tyrosine kinase and indicate that NGF may be able to promote certain aspects of mast cell development and/or maturation in humans. Our studies also raise the possibility that human mast cells may represent a potential source for neurotrophins.


Author(s):  
Tatsuki R. Kataoka ◽  
Chiyuki Ueshima ◽  
Masahiro Hirata ◽  
Sachiko Minamiguchi ◽  
Hironori Haga

Killer immunoglobulin-like receptor (KIR) 2DL4 (CD158d) was previously thought to be a human NK-cell-specific protein but its expression has also been demonstrated in human mast cells. Mast cells are involved in allergic reactions via their KIT-mediated and IgE receptor-mediated responses. We recently detected the expression of KIR2DL4 in human cultured mast cells established from peripheral blood derived from healthy volunteers (PB-mast), a human mast cell line (LAD2), and non-neoplastic mast cells, including pathological specimens. An agonistic antibody against KIR2DL4 negatively regulates the KIT- and IgE-receptor-mediated responses of PB-mast and LAD2 cells. In addition, agonistic antibodies and human leukocyte antigen (HLA)-G, a natural ligand for KIR2DL4, induce the secretion from these cells of leukemia inhibitory factor and serine proteases, which have been implicated in pregnancy establishment and cancer metastasis. Therefore, KIR2DL4 stimulation with agonistic antibodies and recombinant HLA-G protein may enhance both processes, in addition to suppressing mast-cell-mediated allergic reactions.


2002 ◽  
Vol 76 (16) ◽  
pp. 8408-8419 ◽  
Author(s):  
Christine A. King ◽  
Robert Anderson ◽  
Jean S. Marshall

ABSTRACT Severe dengue virus infections usually occur in individuals who have preexisting anti-dengue virus antibodies. Mast cells are known to play an important role in host defense against several pathogens, but their role in viral infection has not yet been elucidated. The effects of dengue virus infection on the production of chemokines by human mast cells were examined. Elevated levels of secreted RANTES, MIP-1α, and MIP-1β, but not IL-8 or ENA-78, were observed following infection of KU812 or HMC-1 human mast cell-basophil lines. In some cases a >200-fold increase in RANTES production was observed. Cord blood-derived cultured human mast cells treated with dengue virus in the presence of subneutralizing concentrations of dengue virus-specific antibody also demonstrated significantly (P < 0.05) increased RANTES production, under conditions which did not induce significant degranulation. Chemokine responses were not observed when mast cells were treated with UV-inactivated dengue virus in the presence or absence of human dengue virus-specific antibody. Neither antibody-enhanced dengue virus infection of the highly permissive U937 monocytic cell line nor adenovirus infection of mast cells induced a RANTES, MIP-1α, or MIP-1β response, demonstrating a selective mast cell response to dengue virus. These results suggest a role for mast cells in the initiation of chemokine-dependent host responses to dengue virus infection.


Blood ◽  
1983 ◽  
Vol 62 (6) ◽  
pp. 1251-1260 ◽  
Author(s):  
MA Horton ◽  
HA O'Brien

Abstract Recent studies in rodents have demonstrated that mast cells derived from lymphoid tissues can be grown in longterm culture, provided that supportive growth factors or stromal fibroblasts are added; such findings have not been reported in man. Furthermore, although a hemopoietic origin for mast cells is supported by transplantation studies in mice, the exact origin of the human mast cell or its relationship to the circulating basophil and other hemopoietic cell lineages is unknown. We have investigated the requirements for in vitro growth of human mast cells derived from the infiltrated bone marrow of a patient with systemic mastocytosis, and have characterized both the mast cells proliferating in these cultures and those obtained from splenic infiltrates. Our data approached two questions: (1) Is there any evidence for the origin of mast cells from a bone-marrow-derived stem cell, and, if so, (2) what lineage relationship is there between mast cells and granulopoietic cells, including basophils? First, we have shown the expression of hemopoietic tissue-specific antigens by mast cells, strongly supporting a bone marrow origin for the mast cell in man (at least for those mast cells analyzed here). Second, the complete lack of granulocyte-monocyte markers contrasts with the phenotype of the basophil and suggests that mast cells diverge considerably from other granulopoietic cells during the acquisition of their differentiated specialized functions.


2020 ◽  
Vol 21 (3) ◽  
pp. 954 ◽  
Author(s):  
Tatsuki R. Kataoka ◽  
Chiyuki Ueshima ◽  
Masahiro Hirata ◽  
Sachiko Minamiguchi ◽  
Hironori Haga

Killer immunoglobulin-like receptor (KIR) 2DL4 (CD158d) was previously thought to be a human NK cell-specific protein. Mast cells are involved in allergic reactions via their KIT-mediated and FcɛRI-mediated responses. We recently detected the expression of KIR2DL4 in human cultured mast cells established from peripheral blood of healthy volunteers (PB-mast), in the human mast cell line LAD2, and in human tissue mast cells. Agonistic antibodies against KIR2DL4 negatively regulate the KIT-mediated and FcɛRI-mediated responses of PB-mast and LAD2 cells. In addition, agonistic antibodies and human leukocyte antigen (HLA)-G, a natural ligand for KIR2DL4, induce the secretion of leukemia inhibitory factor and serine proteases from human mast cells, which have been implicated in pregnancy establishment and cancer metastasis. Therefore, KIR2DL4 stimulation with agonistic antibodies and recombinant HLA-G protein may enhance both processes, in addition to suppressing mast-cell-mediated allergic reactions.


2007 ◽  
Vol 30 (4) ◽  
pp. 96
Author(s):  
Candy Tsang ◽  
A. D. Befus

Background: Mast cells have long been recognized for their involvement in allergic diseases. In the last decade, the importance of mast cells in innate responses against bacteria has been established, but little is known about their contribution in viral infections. Mast cells are abundant at mucosal surfaces such as the lungs in close proximity to the epithelium. In the lung, the epithelium is a primary target for viral infections. Mast cells are secondarily exposed to newly formed virions released from epithelial cells. Mast cells have toll-like receptors (TLRs) that detect various pathogen components. Our first hypothesis is that viral TLR agonists will induce mast cells to release cytokines thought to be involved in viral infections. Both the pro-inflammatory cytokine IL-6 and the chemokine IL-8 are produced during viral infections. TGF-β is an immunoregulatory cytokine that modulates the activity of various immune cells and could also play a role in viral infections. Methods: We used polyI:C, a synthetic double-stranded RNA (dsRNA), as a TLR3 agonist, loxoribine as a TLR7 agonist, and unmethylated CpG DNA as a TLR9 agonist. We treated mast cells from the cell line HMC-1 (Human Mast cell-1) for 0.5 – 24hr with the TLR agonists and performed dose response studies for all stimuli. Supernatants from treated mast cells were measured for IL-6, IL-8, and TGF-β by ELISA. Results: Cytokine release was highest at the 24hr time point. Mast cells released IL-6, IL-8, and TGF-β in response to the TLR3 agonist polyI:C in a dose-dependent manner, but not to the other viral TLR agonists. PolyI:C (10μg/mL) versus unstimulated controls significantly increased mast cell release of IL-6 (224.7±57.4 vs. 39.0±5.7, p≤0.001) and TGF-β (240.2±28.9 vs. 116.1±16.7, p≤0.05). PolyI:C induced release of IL-8 from mast cells was increased but not significant. Viral exposure also induces epithelial cells to produce type I interferons, IFNα and β. These interferons have potent antiviral activity, but also have effects on mast cells, decreasing mast cell adhesion to extracellular matrix and reducing co-stimulatory activity on T cells. Our second hypothesis is that IFNα and β will induce mast cells to release cytokines similar to stimulation with polyI:C. Our preliminary data showed that IFNα, IFNβ , and IFNα and β in combination induced a low level of IL-8 and TGF-β release from mast cells, but had no effect on IL-6 release. Conclusion: HMC-1 responds to dsRNA, a TLR3 agonist produced in epithelial cells during viral replication, by releasing IL-6 and TGF-β. HMC-1 also responds to IFNα and β by releasing IL-8 and TGF-β, indicating that human mast cells respond to epithelial mediators produced during viral infections. Our results show that mast cells contribute to the innate response against viruses by responding to mediators released by virus-infected epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document