TECK, an Efficacious Chemoattractant for Human Thymocytes, Uses GPR-9-6/CCR9 as a Specific Receptor

Blood ◽  
1999 ◽  
Vol 94 (7) ◽  
pp. 2533-2536 ◽  
Author(s):  
Byung-S. Youn ◽  
Chang H. Kim ◽  
Franklin O. Smith ◽  
Hal E. Broxmeyer

Chemokines regulate leukocytes trafficking in normal and inflammation conditions. Thymus-seeding progenitors are made in bone marrow and migrate to the thymus where they undergo their maturation to antigen-specific T cells. Immature T cells are in thymic cortex, while mature thymocytes are in medulla. Chemokines may be important for homing of thymus-seeding progenitors, and/or differential thymocyte localization in thymus. Here we report that GPR-9-6, now called CC chemokine receptor 9 (CCR9), is a receptor for thymus-expressed chemokine, TECK. Among a panel of chemokines tested, TECK specifically induced calcium flux in CCR9-expressing cell lines. We also showed that TECK efficaciously induced chemotaxis of immature CD4+CD8+ double-positive, and mature CD4+ and CD8+ single-positive human thymocytes. Our data suggest that TECK/CCR9 interaction may play a pivotal role in T-cell migration in the thymus.

F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 922
Author(s):  
Johannes M. Dijkstra

This correspondence concerns a recent publication in Immunity by Hickman et al.1 who analyzed the effect of Cxcr3 knockout on migration of CD8+ T cells towards and within vaccinia virus-infected mouse ears.  They found that Cxcr3 knockout had no effect on CD8+ T cell migration into the infected ears, a relatively mild effect on virus clearance, and an effect on the contact of CD8+ T cells with virus-infected cells.  Curiously, despite having these basically sound and interesting data, Hickman et al. exaggerated the effect on virus clearance (“dramatically impaired virus clearance”) and focused their conclusions on assumed differences in migration towards infected cells (“CXCR3 chemokine receptor enables local CD8+ T cell migration”) rather than on better proven differences in binding to infected cells.  I believe that from the data presented by Hickman et al. on the effect of Cxcr3 knockout a migration effect independent from the binding effect cannot be concluded beyond discussion.  The fact that CXCR3 is a chemokine receptor, and that most researchers consequently expect a chemokine-gradient-dependent migration effect of the Cxcr3 knockout mutation, increases the risk of misleading readers when approached through the Hickman et al. narrative.  The here-initiated discussion of their article may help to avoid such a misleading.


2018 ◽  
Vol 11 (555) ◽  
pp. eaaq1075 ◽  
Author(s):  
Jeffrey S. Smith ◽  
Lowell T. Nicholson ◽  
Jutamas Suwanpradid ◽  
Rachel A. Glenn ◽  
Nicole M. Knape ◽  
...  

The chemokine receptor CXCR3 plays a central role in inflammation by mediating effector/memory T cell migration in various diseases; however, drugs targeting CXCR3 and other chemokine receptors are largely ineffective in treating inflammation. Chemokines, the endogenous peptide ligands of chemokine receptors, can exhibit so-called biased agonism by selectively activating either G protein– or β-arrestin–mediated signaling after receptor binding. Biased agonists might be used as more targeted therapeutics to differentially regulate physiological responses, such as immune cell migration. To test whether CXCR3-mediated physiological responses could be segregated by G protein– and β-arrestin–mediated signaling, we identified and characterized small-molecule biased agonists of the receptor. In a mouse model of T cell–mediated allergic contact hypersensitivity (CHS), topical application of a β-arrestin–biased, but not a G protein–biased, agonist potentiated inflammation. T cell recruitment was increased by the β-arrestin–biased agonist, and biopsies of patients with allergic CHS demonstrated coexpression of CXCR3 and β-arrestin in T cells. In mouse and human T cells, the β-arrestin–biased agonist was the most efficient at stimulating chemotaxis. Analysis of phosphorylated proteins in human lymphocytes showed that β-arrestin–biased signaling activated the kinase Akt, which promoted T cell migration. This study demonstrates that biased agonists of CXCR3 produce distinct physiological effects, suggesting discrete roles for different endogenous CXCR3 ligands and providing evidence that biased signaling can affect the clinical utility of drugs targeting CXCR3 and other chemokine receptors.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Vanesa Stojanovska ◽  
Monica Prakash ◽  
Rachel McQuade ◽  
Sarah Fraser ◽  
Vasso Apostolopoulos ◽  
...  

Purpose. Oxaliplatin is a platinum-based chemotherapeutic agent demonstrating significant antitumor efficacy. Unlike conventional anticancer agents which are immunosuppressive, oxaliplatin has the capacity to stimulate immunological effects in response to the presentation of damage associated molecular patterns (DAMPs) elicited upon cell death. However, the effects of oxaliplatin treatment on systemic immune responses remain largely unknown. Aims of this study were to investigate the effects of oxaliplatin treatment on the proportions of (1) splenic T cells, B cells, macrophages, pro-/anti-inflammatory cytokines, gene expression of splenic cytokines, chemokines, and mediators; (2) double-positive and single-positive CD4+and CD8+T thymocytes; (3) bone-marrow hematopoietic stem and progenitor cells.Methods. Male BALB/c mice received intraperitoneal injections of oxaliplatin (3mg/kg/d) or sterile water tri-weekly for 2 weeks. Leukocyte populations within the spleen, thymus, and bone-marrow were assessed using flow cytometry. RT-PCR was performed to characterise changes in splenic inflammation-associated genes.Results. Oxaliplatin treatment reduced spleen size and cellularity (CD45+cells), increased the proportion of CD4+, CD8+, and Treg cells, and elevated TNF-αexpression. Oxaliplatin was selectively cytotoxic to B cells but had no effect on splenic macrophages. Oxaliplatin treatment altered the gene expression of several cytokines, chemokines, and cell mediators. Oxaliplatin did not deplete double-positive thymocytes but increased the single-positive CD8+subset. There was also an increase in activated (CD69+) CD8+T cells. Bone-marrow hematopoietic progenitor pool was demonstrably normal following oxaliplatin treatment when compared to the vehicle-treated cohort.Conclusion. Oxaliplatin does not cause systemic immunosuppression and, instead, has the capacity to induce beneficial antitumor immune responses.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2771-2771
Author(s):  
Mrinmoy Sanyal ◽  
James W. Tung ◽  
Sussan Dejbakhsh-Jones ◽  
Samuel Strober ◽  
Leonore A. Herzenberg ◽  
...  

Abstract It has become increasingly apparent that transcription factors originally discovered at the sites of chromosomal translocations in acute leukemias serve critical roles for hematopoietic cell development and function, which require fine orchestration of gene expression. Pbx1 is one such transcription factor, which forms a chimeric oncoprotein, E2a-Pbx1, resulting from t(1;19) chromosomal translocations between the E2a and Pbx1 loci in a subset of the pediatric pre-B cell acute lymphoblastic leukemias. Previously, our laboratory has shown that mice nullizygous for Pbx1 die in utero with substantial myelo-erythroid defects associated with profound fetal anemia. To determine whether Pbx1 is also required for normal lymphoid development, we performed Rag1-deficient blastocyst complementation assays using Pbx1 homozygous null embryonic stem (ES) cells. Interestingly, analysis of resulting chimeric mice displayed a partial rescue of the Rag1 phenotype as evidenced by T cell-restricted lymphocyte development. Pbx1 null ES cells produced circulating CD4 and CD8 single positive T cells, however in contrast to the typical naive T cell phenotype (CD62LhighCD44loCD45RBhigh) in control mice they exclusively displayed a characteristic memory T cell phenotype (CD62LlowCD44highCD45RBlow). Analysis of the thymi of the chimeric mice for T cell developmental precursors showed the complete absence of CD4/CD8 double-positive intermediates. Rather, T cells in the thymus, and all secondary lymphoid organs, were single positive CD4 or CD8 cells that exclusively displayed a similar memory T cell phenotype typical of T cells derived from bone marrow resident committed T cell progenitors (CTP). The striking absence of classical CD4/CD8 double-positive cells in the thymus indicates that Pbx1 deficiency interrupts the intrathymic T cell developmental pathway. Furthermore, the phenotypic resemblance of Pbx1 null T cells with T cells derived from bone marrow resident CTP strongly suggests that T cell development in the absence of Pbx1 may occur via an extrathymic pathway.


1999 ◽  
Vol 190 (8) ◽  
pp. 1123-1134 ◽  
Author(s):  
K. Mark Ansel ◽  
Louise J. McHeyzer-Williams ◽  
Vu N. Ngo ◽  
Michael G. McHeyzer-Williams ◽  
Jason G. Cyster

Migration of antigen-activated CD4 T cells to B cell areas of lymphoid tissues is important for mounting T cell–dependent antibody responses. Here we show that CXC chemokine receptor (CXCR)5, the receptor for B lymphocyte chemoattractant (BLC), is upregulated on antigen-specific CD4 T cells in vivo when animals are immunized under conditions that promote T cell migration to follicles. In situ hybridization of secondary follicles for BLC showed high expression in mantle zones and low expression in germinal centers. When tested directly ex vivo, CXCR5hi T cells exhibited a vigorous chemotactic response to BLC. At the same time, the CXCR5hi cells showed reduced responsiveness to the T zone chemokines, Epstein-Barr virus–induced molecule 1 (EBI-1) ligand chemokine (ELC) and secondary lymphoid tissue chemokine (SLC). After adoptive transfer, CXCR5hi CD4 T cells did not migrate to follicles, indicating that additional changes may occur after immunization that help direct T cells to follicles. To further explore whether T cells could acquire an intrinsic ability to migrate to follicles, CD4−CD8− double negative (DN) T cells from MRL-lpr mice were studied. These T cells normally accumulate within follicles of MRL-lpr mice. Upon transfer to wild-type recipients, DN T cells migrated to follicle proximal regions in all secondary lymphoid tissues. Taken together, our findings indicate that reprogramming of responsiveness to constitutively expressed lymphoid tissue chemokines plays an important role in T cell migration to the B cell compartment of lymphoid tissues.


Author(s):  
Paulina Akeus ◽  
Louis Szeponik ◽  
Veronica Langenes ◽  
Viktoria Karlsson ◽  
Patrik Sundström ◽  
...  

2021 ◽  
pp. annrheumdis-2020-219335
Author(s):  
Emma Garcia-Melchor ◽  
Giacomo Cafaro ◽  
Lucy MacDonald ◽  
Lindsay A N Crowe ◽  
Shatakshi Sood ◽  
...  

ObjectivesIncreasing evidence suggests that inflammatory mechanisms play a key role in chronic tendon disease. After observing T cell signatures in human tendinopathy, we explored the interaction between T cells and tendon stromal cells or tenocytes to define their functional contribution to tissue remodelling and inflammation amplification and hence disease perpetuation.MethodsT cells were quantified and characterised in healthy and tendinopathic tissues by flow cytometry (FACS), imaging mass cytometry (IMC) and single cell RNA-seq. Tenocyte activation induced by conditioned media from primary damaged tendon or interleukin-1β was evaluated by qPCR. The role of tenocytes in regulating T cell migration was interrogated in a standard transwell membrane system. T cell activation (cell surface markers by FACS and cytokine release by ELISA) and changes in gene expression in tenocytes (qPCR) were assessed in cocultures of T cells and explanted tenocytes.ResultsSignificant quantitative differences were observed in healthy compared with tendinopathic tissues. IMC showed T cells in close proximity to tenocytes, suggesting tenocyte–T cell interactions. On activation, tenocytes upregulated inflammatory cytokines, chemokines and adhesion molecules implicated in T cell recruitment and activation. Conditioned media from activated tenocytes induced T cell migration and coculture of tenocytes with T cells resulted in reciprocal activation of T cells. In turn, these activated T cells upregulated production of inflammatory mediators in tenocytes, while increasing the pathogenic collagen 3/collagen 1 ratio.ConclusionsInteraction between T cells and tenocytes induces the expression of inflammatory cytokines/chemokines in tenocytes, alters collagen composition favouring collagen 3 and self-amplifies T cell activation via an auto-regulatory feedback loop. Selectively targeting this adaptive/stromal interface may provide novel translational strategies in the management of human tendon disorders.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A586-A586
Author(s):  
Sara Schad ◽  
Andrew Chow ◽  
Heng Pan ◽  
Levi Mangarin ◽  
Roberta Zappasodi ◽  
...  

BackgroundCD4 and CD8 T cells are genetically and functionally distinct cell subsets of the adaptive immune system that play pivotal roles in immune surveillance and disease control. During development in the thymus, transcription factors ThPOK and Runx3 regulate the differentiation and maturation of these two lineages into single positive T cells that enter the periphery with mutually exclusive expression of either the CD4 or CD8 co-receptor.1–2 Despite our expectation that these two cell fates are fixed, mature CD4+CD8+ double positive (DP) T cells have been described in the context of numerous immunological responses, including cancer, but their molecular and functional properties and therapeutic relevance remain controversial and largely unknown.3–5MethodsOur lab has identified and characterized a heterogenous DP T cell population in murine and human melanoma tumors comprised of CD4 and CD8 T cells re-expressing the opposite co-receptor and a parallel uptake in the opposite cell type’s phenotype and function. Using CD4 (Trp1) and CD8 (Pmel) transgenic TCR T cells specific to B16 melanoma antigens gp75 and gp100 respectively, we demonstrate the re-expression of the opposite co-receptor following adoptive T cell transfer in B16 melanoma tumor bearing mice.ResultsSpecifically, up to 50% of transferred CD4 Trp1 T cells will re-express CD8 to become a DP T cell in the tumor microenvironment. Further, these CD4 derived DP T cells upregulate CD8 lineage regulator Runx3 and cytolytic genes Gzmb, Gzmk, and Prf1 to become potent cytotoxic T cells. Alternatively, a subset of CD8 Pmel T cells differentiate into DP T cells characterized by the increased expression of CD4, ThPOK, and regulatory marker FoxP3 (figure 1). In addition, we utilized 10x single cell and ATAC sequencing to further characterize these divergent DP T cell populations among open repertoire T cells isolated from murine and human melanoma tumors.ConclusionsOur findings highlight the capability of single positive T cells to differentiate in response to antigen and local stimuli into novel T cell subsets with polyfunctional characteristics. The resulting cell subsets will potentially affect the tumor microenvironment in distinct ways. Our studies may inform therapeutic approaches to identify antigen specific T cells as well as innovative signaling pathways to target when genetically engineering T cells to optimize cytotoxic function in the setting of adoptive cell therapy.Ethics ApprovalThe human biospecimen analyses were approved by Memorial Sloan Kettering Cancer Center IRB #06-107ReferencesEllmeier W, Haust L & Tschismarov R. Transcriptional control of CD4 and CD8 coreceptor expression during T cell development. Cell Mol Life Sci 2013;70:4537–4553.Luckey MA, et al. The transcription factor ThPOK suppresses Runx3 and imposes CD4+ lineage fate by inducing the SOCS suppressors of cytokine signaling. Nature Immunology 2014; 15, 638–645.Bohner P, et al. Double positive CD4(+)CD8(+) T Cells are enriched in urological cancers and favor T Helper-2 polarization. Front Immunol 2019; 10, 622.Nascimbeni M, Shin E-C, Chiriboga L, Kleiner DE & Rehermann B. Peripheral CD4(+)CD8(+) T cells are differentiated effector memory cells with antiviral functions. Blood 2004;104:478–486.Nishida K, et al. Clinical importance of the expression of CD4+CD8+ T cells in renal cell carcinoma. Int Immunol 2020;32:347–357.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3648
Author(s):  
Eva-Maria Kamionka ◽  
Baifeng Qian ◽  
Wolfgang Gross ◽  
Frank Bergmann ◽  
Thilo Hackert ◽  
...  

The dominant intrastromal T-cell infiltration in pancreatic cancer is mainly caused by the contact guidance through the excessive desmoplastic reaction and could represent one of the obstacles to an effective immune response in this tumor type. This study analyzed the collagen organization in normal and malignant pancreatic tissues as well as its influence on T-cell distribution in pancreatic cancer. Human pancreatic tissue was analyzed using immunofluorescence staining and multiphoton and SHG microscopy supported by multistep image processing. The influence of collagen alignment on activated T-cells was studied using 3D matrices and time-lapse microscopy. It was found that the stroma of malignant and normal pancreatic tissues was characterized by complex individual organization. T-cells were heterogeneously distributed in pancreatic cancer and there was no relationship between T-cell distribution and collagen organization. There was a difference in the angular orientation of collagen alignment in the peritumoral and tumor-cell-distant stroma regions in the pancreatic ductal adenocarcinoma tissue, but there was no correlation in the T-cell densities between these regions. The grade of collagen alignment did not influence the directionality of T-cell migration in the 3D collagen matrix. It can be concluded that differences in collagen organization do not change the spatial orientation of T-cell migration or influence stromal T-cell distribution in human pancreatic cancer. The results of the present study do not support the rationale of remodeling of stroma collagen organization for improvement of T-cell–tumor cell contact in pancreatic ductal adenocarcinoma.


2018 ◽  
Vol 46 (4) ◽  
pp. 441-449
Author(s):  
Sowmya Angusamy ◽  
Tamer Mansour ◽  
Mohammed Abdulmageed ◽  
Rachel Han ◽  
Brian C. Schutte ◽  
...  

Abstract Background: The adaptive immune system of neonates is relatively underdeveloped. The thymus is an essential organ for adaptive T cell development and might be affected during the natural course of oxygen induced lung injury. The effect of prolonged hyperoxia on the thymus, thymocyte and T cell development, and its proliferation has not been studied extensively. Methods: Neonatal mice were exposed to 85% oxygen (hyperoxia) or room air (normoxia) up to 28 days. Flow cytometry using surface markers were used to assay for thymocyte development and proliferation. Results: Mice exposed to prolonged hyperoxia had evidence of lung injury associated alveolar simplification, a significantly lower mean weight, smaller thymic size, lower mean thymocyte count and higher percentage of apoptotic thymocytes. T cells subpopulation in the thymus showed a significant reduction in the count and proliferation of double positive and double negative T cells. There was a significant reduction in the count and proliferation of single positive CD4+ and CD8+ T cells. Conclusions: Prolonged hyperoxia in neonatal mice adversely affected thymic size, thymocyte count and altered the distribution of T cells sub-populations. These results are consistent with the hypothesis that prolonged hyperoxia causes defective development of T cells in the thymus.


Sign in / Sign up

Export Citation Format

Share Document