Glucocorticoids transform CD40-triggering of dendritic cells into an alternative activation pathway resulting in antigen-presenting cells that secrete IL-10

Blood ◽  
2000 ◽  
Vol 95 (10) ◽  
pp. 3162-3167 ◽  
Author(s):  
Delphine Rea ◽  
Cees van Kooten ◽  
Krista E. van Meijgaarden ◽  
Tom H. M. Ottenhoff ◽  
Cornelis J. M. Melief ◽  
...  

Dendritic cell (DC) activation through CD40-CD40 ligand interactions is a key regulatory step for the development of protective T-cell immunity and also plays an important role in the initiation of T-cell responses involved in autoimmune diseases and allograft rejection. In contrast to previous reports, we show that the immunosuppressive drug dexamethasone (DEX) redirects rather than simply blocks this DC activation process. We found that DCs triggered through CD40 in the presence of DEX were unable to acquire high levels of costimulatory, adhesion, and major histocompatibility complex class I and II molecules and failed to express the maturation marker CD83, whereas antigen uptake was not affected. Moreover, DEX strikingly modified the CD40-activated DC cytokine secretion profile by suppressing the production of the proinflammatory cytokine interleukin (IL)-12 and potentiating the secretion of the anti-inflammatory cytokine IL-10. Accordingly, DEX-exposed CD40-triggered DCs displayed a decreased T-cell allostimulatory potential and a dramatically impaired ability to activate cloned CD4+ T helper 1 (Th1) cells. Moreover, interaction between Th1 cells and these DCs rendered the T cells hyporesponsive to further antigen-specific restimulation. Collectively, our results demonstrate that DEX profoundly modulates CD40-dependent DC activation and suggest that the resulting alternatively activated DCs can be exploited for suppression of unwanted T-cell responses in vivo.

Blood ◽  
2000 ◽  
Vol 95 (10) ◽  
pp. 3162-3167 ◽  
Author(s):  
Delphine Rea ◽  
Cees van Kooten ◽  
Krista E. van Meijgaarden ◽  
Tom H. M. Ottenhoff ◽  
Cornelis J. M. Melief ◽  
...  

Abstract Dendritic cell (DC) activation through CD40-CD40 ligand interactions is a key regulatory step for the development of protective T-cell immunity and also plays an important role in the initiation of T-cell responses involved in autoimmune diseases and allograft rejection. In contrast to previous reports, we show that the immunosuppressive drug dexamethasone (DEX) redirects rather than simply blocks this DC activation process. We found that DCs triggered through CD40 in the presence of DEX were unable to acquire high levels of costimulatory, adhesion, and major histocompatibility complex class I and II molecules and failed to express the maturation marker CD83, whereas antigen uptake was not affected. Moreover, DEX strikingly modified the CD40-activated DC cytokine secretion profile by suppressing the production of the proinflammatory cytokine interleukin (IL)-12 and potentiating the secretion of the anti-inflammatory cytokine IL-10. Accordingly, DEX-exposed CD40-triggered DCs displayed a decreased T-cell allostimulatory potential and a dramatically impaired ability to activate cloned CD4+ T helper 1 (Th1) cells. Moreover, interaction between Th1 cells and these DCs rendered the T cells hyporesponsive to further antigen-specific restimulation. Collectively, our results demonstrate that DEX profoundly modulates CD40-dependent DC activation and suggest that the resulting alternatively activated DCs can be exploited for suppression of unwanted T-cell responses in vivo.


2017 ◽  
Vol 214 (5) ◽  
pp. 1509-1528 ◽  
Author(s):  
Christian H.K. Lehmann ◽  
Anna Baranska ◽  
Gordon F. Heidkamp ◽  
Lukas Heger ◽  
Kirsten Neubert ◽  
...  

Dendritic cells (DCs) are efficient antigen-presenting cells equipped with various cell surface receptors for the direct or indirect recognition of pathogenic microorganisms. Interestingly, not much is known about the specific expression pattern and function of the individual activating and inhibitory Fcγ receptors (FcγRs) on splenic DC subsets in vivo and how they contribute to the initiation of T cell responses. By targeting antigens to select activating and the inhibitory FcγR in vivo, we show that antigen uptake under steady-state conditions results in a short-term expansion of antigen-specific T cells, whereas under inflammatory conditions especially, the activating FcγRIV is able to induce superior CD4+ and CD8+ T cell responses. Of note, this effect was independent of FcγR intrinsic activating signaling pathways. Moreover, despite the expression of FcγRIV on both conventional splenic DC subsets, the induction of CD8+ T cell responses was largely dependent on CD11c+CD8+ DCs, whereas CD11c+CD8− DCs were critical for priming CD4+ T cell responses.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 8545-8545
Author(s):  
S. Adams ◽  
D. O'Neill ◽  
D. Nonaka ◽  
O. Manches ◽  
L. Chiriboga ◽  
...  

8545 Purpose: This clinical trial evaluates the safety and adjuvant activity of imiquimod, a toll-like receptor (TLR)-7 agonist, when given with a NY-ESO-1 protein vaccine. Imiquimod, by locally activating and recruiting dendritic cells (DCs) into the skin, is expected to stimulate antigen uptake by DCs, induce maturation and migration to draining lymph nodes, and to induce antigen-specific T and B cell immunity. Methods: Pilot study; 9 patients with resected stage 2B-3C malignant melanoma. Four 21 day cycles consisted of topical imiquimod cream (250 mg) on days 1–5 and id. injected NY-ESO-1 protein (100 mcg) into the site on day 3. Blood was drawn at several time points for immune monitoring; skin punch biopsies were obtained from control, imiquimod and vaccination sites 48 hours after the last vaccination. Results: The regimen was tolerated well, all patients completed four vaccinations. AEs were mild and transient and included injection site reactions (8/9 patients), fatigue (4/9 patients) and fever (2/9 patients). Significant levels of antigen-specific CD4+ or CD8+ T cell responses were not detected in ex-vivo ELISPOT assays. However, intracellular cytokine staining assays after in vitro pre-stimulation indicated that 6 of 8 subjects developed NY-ESO-1 CD4+ T cell responses. Humoral immunity was manifest by the induction of anti-NY-ESO-1 antibodies in 7/9 patients post-vaccination. Histochemistry of skin sections showed significant dermal mononuclear cell infiltrates in Imiquimod treated skin, whereas none were seen in untreated skin (p<0.01). IHC revealed markedly increased numbers of CD3+ (T-cells), CD68+ (macrophages/monocytes), CD123+ (plasmacytoid DCs) and DC-LAMP+ (mature myeloid DCs) immune cells in Imiquimod treated skin when compared with control skin of the same patients (p<0.05). Conclusion: Imiquimod, a topical immune response modifier, generated clear inflammatory infiltrates in the dermis, with significant increases in antigen-presenting cells and T cells. Imiquimod was well tolerated when used as an adjuvant to an NY-ESO-1 protein vaccine. Systemic immunity of both humoral and cellular types was induced in the majority of patients; however, responses were weak and the vaccine combination needs to be optimized in future studies. No significant financial relationships to disclose.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi93-vi93
Author(s):  
Matthias Gromeier ◽  
Mubeen Mosaheb ◽  
Elena Dobrikova ◽  
Michael Brown ◽  
Darell Bigner ◽  
...  

Abstract Options for the immunotherapy of diffuse intrinsic pontine glioma (DIPG), due to its anatomical location and inherent therapy resistance, are limited. The histone 3.3(K27M) mutation in ~80% of such tumors offers a unique opportunity for immunotherapy intervention, as it defines a high affinity, HLA-A2-restricted tumor neoantigen that spontaneously elicits CD8+ T cell responses in DIPG patients. Immunizing against the H3.3(K27M) signature in the clinic has been challenging, as conventional approaches (i.e. peptide-conjugates administered with adjuvants) lack the costimulatory signals known to drive CD8+ effector T cell responses. Therefore, we built on a viral vector approach for engaging innate immune responses to virus infection specifically in antigen presenting cells. Viruses naturally engage innate immunity, induce antigen presentation, and mediate CD8 T cell priming against foreign antigens. Polioviruses can provide a context optimal for generating antigen-specific CD8 T cells, as they have natural tropism for dendritic cells, preeminent inducers of CD8 T cell immunity; elicit Th1-promoting inflammation; and lack interference with innate or adaptive immunity. However, notorious genetic instability and underlying neuropathogenicity has hampered poliovirus-based vector applications. We devised a strategy based on the polio:rhinovirus chimera PVSRIPO, devoid of viral neuropathogenicity after intracerebral inoculation in human subjects, for stable expression of exogenous antigens. PVSRIPO vectors infect, activate, and induce epitope presentation in DCs in vitro; recruit and activate DCs with Th1-dominant cytokine profiles at the injection site in vivo. They efficiently prime tumor antigen-specific CD8 T cells in vivo, induce CD8 T cell migration to the tumor site, delay tumor growth and enhance survival in syngeneic rodent tumor models. We are preparing a prototype PVSRIPO-derived vector delivering the H3.3(K27M) signature for clinical investigation.


2019 ◽  
Vol 93 (19) ◽  
Author(s):  
Zelalem A. Mekonnen ◽  
Branka Grubor-Bauk ◽  
Kieran English ◽  
Preston Leung ◽  
Makutiro G. Masavuli ◽  
...  

ABSTRACT Hepatitis C virus (HCV) is a significant contributor to the global disease burden, and development of an effective vaccine is required to eliminate HCV infections worldwide. CD4+ and CD8+ T cell immunity correlates with viral clearance in primary HCV infection, and intrahepatic CD8+ tissue-resident memory T (TRM) cells provide lifelong and rapid protection against hepatotropic pathogens. Consequently, we aimed to develop a vaccine to elicit HCV-specific CD4+ and CD8+ T cells, including CD8+ TRM cells, in the liver, given that HCV primarily infects hepatocytes. To achieve this, we vaccinated wild-type BALB/c mice with a highly immunogenic cytolytic DNA vaccine encoding a model HCV (genotype 3a) nonstructural protein (NS5B) and a mutant perforin (pVAX-NS5B-PRF), as well as a recombinant adeno-associated virus (AAV) encoding NS5B (rAAV-NS5B). A novel fluorescent target array (FTA) was used to map immunodominant CD4+ T helper (TH) cell and cytotoxic CD8+ T cell epitopes of NS5B in vivo, which were subsequently used to design a KdNS5B451-459 tetramer and analyze NS5B-specific T cell responses in vaccinated mice in vivo. The data showed that intradermal prime/boost vaccination with pVAX-NS5B-PRF was effective in eliciting TH and cytotoxic CD8+ T cell responses and intrahepatic CD8+ TRM cells, but a single intravenous dose of hepatotropic rAAV-NS5B was significantly more effective. As a T-cell-based vaccine against HCV should ideally result in localized T cell responses in the liver, this study describes primary observations in the context of HCV vaccination that can be used to achieve this goal. IMPORTANCE There are currently at least 71 million individuals with chronic HCV worldwide and almost two million new infections annually. Although the advent of direct-acting antivirals (DAAs) offers highly effective therapy, considerable remaining challenges argue against reliance on DAAs for HCV elimination, including high drug cost, poorly developed health infrastructure, low screening rates, and significant reinfection rates. Accordingly, development of an effective vaccine is crucial to HCV elimination. An HCV vaccine that elicits T cell immunity in the liver will be highly protective for the following reasons: (i) T cell responses against nonstructural proteins of the virus are associated with clearance of primary infection, and (ii) long-lived liver-resident T cells alone can protect against malaria infection of hepatocytes. Thus, in this study we exploit promising vaccination platforms to highlight strategies that can be used to evoke highly functional and long-lived T cell responses in the liver for protection against HCV.


Viruses ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 645 ◽  
Author(s):  
Hendrik Luxenburger ◽  
Christoph Neumann-Haefelin ◽  
Robert Thimme ◽  
Tobias Boettler

Hepatitis C virus (HCV)-specific T cell responses are closely linked to the clinical course of infection. While T cell responses in self-limiting infection are typically broad and multi-specific, they display several distinct features of functional impairment in the chronic phase. Moreover, HCV readily adapts to immune pressure by developing escape mutations within epitopes targeted by T cells. Much of our current knowledge on HCV-specific T cell responses has been gathered under the assumption that this might eventually pave the way for a therapeutic vaccine. However, with the development of highly efficient direct acting antivirals (DAAs), there is less interest in the development of a therapeutic vaccine for HCV and the scope of T cell research has shifted. Indeed, the possibility to rapidly eradicate an antigen that has persisted over years or decades, and has led to T cell exhaustion and dysfunction, provides the unique opportunity to study potential T cell recovery after antigen cessation in a human in vivo setting. Findings from such studies not only improve our basic understanding of T cell immunity but may also advance immunotherapeutic approaches in cancer or chronic hepatitis B and D infection. Moreover, in order to edge closer to the WHO goal of HCV elimination by 2030, a prophylactic vaccine is clearly required. Thus, in this review, we will summarize our current knowledge on HCV-specific T cell responses and also provide an outlook on the open questions that require answers in this field.


2003 ◽  
Vol 77 (20) ◽  
pp. 10862-10871 ◽  
Author(s):  
Pablo Sarobe ◽  
Juan José Lasarte ◽  
Aintzane Zabaleta ◽  
Laura Arribillaga ◽  
Ainhoa Arina ◽  
...  

ABSTRACT Hepatitis C virus (HCV) chronic infection is characterized by low or undetectable cellular immune responses against HCV antigens. Some studies have suggested that HCV proteins manipulate the immune system by suppressing the specific antiviral T-cell immunity. We have previously reported that the expression of HCV core and E1 proteins (CE1) in dendritic cells (DC) impairs their ability to prime T cells in vitro. We show here that immunization of mice with immature DC transduced with an adenovirus encoding HCV core and E1 antigens (AdCE1) induced lower CD4+- and CD8+-T-cell responses than immunization with DC transduced with an adenovirus encoding NS3 (AdNS3). However, no differences in the strength of the immune response were detected when animals were immunized with mature DC subsequently transduced with AdCE1 or AdNS3. According to these findings, we observed that the expression of CE1 in DC inhibited the maturation caused by tumor necrosis factor alpha or CD40L but not that induced by lipopolysaccharide. Blockade of DC maturation by CE1 was manifested by a lower expression of maturation surface markers and was associated with a reduced ability of AdCE1-transduced DC to activate CD4+- and CD8+-T-cell responses in vivo. Our results suggest that HCV CE1 proteins modulate T-cell responses by decreasing the stimulatory ability of DC in vivo via inhibition of their physiological maturation pathways. These findings are relevant for the design of therapeutic vaccination strategies in HCV-infected patients.


2020 ◽  
Vol 8 (1) ◽  
pp. e000258 ◽  
Author(s):  
Alan Chen Chen ◽  
Renhuan Xu ◽  
Tao Wang ◽  
Junping Wei ◽  
Xiao-Yi Yang ◽  
...  

BackgroundThe advent of immune checkpoint blockade antibodies has demonstrated that effective mobilization of T cell responses can cause tumor regression of metastatic cancers, although these responses are heterogeneous and restricted to certain histologic types of cancer. To enhance these responses, there has been renewed emphasis in developing effective cancer-specific vaccines to stimulate and direct T cell immunity to important oncologic targets, such as the oncogene human epidermal growth factor receptor 2 (HER2), expressed in ~20% of breast cancers (BCs).MethodsIn our study, we explored the use of alternative antigen trafficking through use of a lysosome-associated membrane protein 1 (LAMP) domain to enhance vaccine efficacy against HER2 and other model antigens in bothin vitroandin vivostudies.ResultsWe found that inclusion of this domain in plasmid vaccines effectively trafficked antigens to endolysosomal compartments, resulting in enhanced major histocompatibility complex (MHC) class I and II presentation. Additionally, this augmented the expansion/activation of antigen-specific CD4+ and CD8+ T cells and also led to elevated levels of antigen-specific polyfunctional CD8+ T cells. Significantly, vaccination with HER2-LAMP produced tumor regression in ~30% of vaccinated mice with established tumors in an endogenous model of metastatic HER2+ BC, compared with 0% of HER2-WT vaccinated mice. This therapeutic benefit is associated with enhanced tumor infiltration of activated CD4+ and CD8+ T cells.ConclusionsThese data demonstrate the potential of using LAMP-based endolysosomal trafficking as a means to augment the generation of polyfunctional, antigen-specific T cells in order to improve antitumor therapeutic responses using cancer antigen vaccines.


2005 ◽  
Vol 79 (6) ◽  
pp. 3748-3757 ◽  
Author(s):  
S. Chea ◽  
C. J. Dale ◽  
R. De Rose ◽  
I. A. Ramshaw ◽  
S. J. Kent

ABSTRACT Advances in treating and preventing AIDS depend on understanding how human immunodeficiency virus (HIV) is eliminated in vivo and on the manipulation of effective immune responses to HIV. During the development of assays quantifying the elimination of fluorescent autologous cells coated with overlapping 15-mer simian immunodeficiency virus (SIV) or HIV-1 peptides, we made a remarkable observation: the reinfusion of macaque peripheral blood mononuclear cells, or even whole blood, pulsed with SIV and/or HIV peptides generated sharply enhanced SIV- and HIV-1-specific T-cell immunity. Strong, broad CD4+- and CD8+-T-cell responses could be enhanced simultaneously against peptide pools spanning 87% of all SIV- and HIV-1-expressed proteins—highly desirable characteristics of HIV-specific immunity. De novo hepatitis C virus-specific CD4+- and CD8+-T-cell responses were generated in macaques by the same method. This simple technique holds promise for the immunotherapy of HIV and other chronic viral infections.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 887-887
Author(s):  
Ann Cai ◽  
Derin Keskin ◽  
Anselmo Alonso ◽  
David DeLuca ◽  
Wandi Zhang ◽  
...  

Abstract Abstract 887 Over 20 BCR-ABL mutations have been identified that result in imatinib resistance and relapse of chronic myelogenous leukemia (CML). CML is highly responsive to immunological manipulations and we therefore hypothesized that mutated BCR-ABL-derived peptides could serve as immunogenic tumor-specific targets. Herein, we present a multi-step strategy for identifying tumor-specific T cell epitopes generated from gene mutation. We first investigated whether peptides derived from 24 frequent BCR-ABL mutations could potentially bind 8 common class I MHC molecules by applying the well-validated prediction servers IEDB and NetMHC to tiled 9- and 10-mers around each mutation. More than 60 peptides were predicted to bind to one or more of the following alleles with IC50<1000: A*0201, A*0301, A*1101, B*0702, B*0801, B*1501, A*0101 or A*2402. From NetMHC, 24 of 84 (29%) were predicted as high (IC50<50), 42 (50%) as intermediate (IC50=50-500), and 18 (21%) as weak binders (1000> IC50>500). From IEDB, 9 of 61 (15%) were predicted as high, 35 (57%) as intermediate and 17 (38%) as weak binders. 24 of 84 mutated peptides (29%) and 24 of 61 mutated peptides (39%) were predicted as binding with at least two-fold higher affinity compared to parental peptides, using NetMHC and IEDB, respectively. These predictions indicated that cells from 7 of 9 imatinib-resistant CML patients had the potential to present at least one mutated BCR-ABL derived peptide by binding autologous HLA alleles (with IC50<1000). CML cells from 3 of the 5 patients had an E255K mutation and expressed HLA-A3, and were predicted to generate two promising candidate peptides: E255K-A247-255 (KLGGGQYGK, IEDB IC50=113; NetMHC IC50=192) and E255K-B255-263 (KVYEGVWKK, IEDB IC50=29; NetMHC IC50=28). Both peptides were predicted to bind HLA-A*0301 at least ten-fold more tightly than parental peptides. Using a competitive MHC binding assay, we confirmed that E255K-A and –B were high binders with IC50 scores of 208nM and 17nM, respectively and that they both had at least ten-fold fold greater affinity than parental peptides. In addition, E255K-B also bound to the other HLA-A3 superfamily members HLA-A*1101, HLA-A*3001, HLA-A*3101, HLA-A*6801 (IC50: 39–603nM). We next successfully generated T cell lines against E255K-B but not E255 K-A from a normal HLA-A3+ donor that demonstrated greater specificity against the mutated peptide (2330±325 SFC/million cells, by IFNγ-ELISPOT) than the parental peptide (1270±42 SFC/million cells). E255K-B is endogenously processed and presented since E255K-B reactive T cells also responded to HLA-A3+ antigen-presenting cells (APCs) that were transfected with a minigene encompassing 227 base pairs surrounding the E255K mutation (1900±85 SFC/million cells). Finally, we assessed the potential for E255K-B to stimulate T cell responses in CML patients. E255K-B elicits T cell immunity in vivo in that we could detect antigen-specific CD8+ T cell reactivity from two HLA-A3+ CML patients bearing the E255K mutation by IFNγ-ELISPOT and by antigen-specific tetramer staining. T cell responses could be abrogated in the presence of class I blocking antibody w6/32. For both patients, reactive T cells were polyfunctional, expressing GM-CSF, IP10 and TNFα in response to APCs pulsed with mutated peptide or expressing the E255K minigene. For Patient 2, E255K reactivity developed only in the setting of donor-derived engraftment following curative allogeneic stem cell transplantation. Further analysis to explore the kinetics of mutated peptide-specific immunity in relationship to burden of mutation-expressing leukemia cells is in progress. Our studies have demonstrated that leukemia-driven genetic alterations can provide immunogenic tumor-specific antigen targets associated with clinical response in vivo. Importantly, even though BCR-ABL mutations generate resistance to imatinib, they also create novel epitopes that can be effectively recognized by cytotoxic CD8+ T cells. Our studies support the development of specific, nontoxic and personalized vaccination strategies for eradication of drug-resistant CML. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document