Both Stat5a and Stat5b are required for antigen-induced eosinophil and T-cell recruitment into the tissue

Blood ◽  
2000 ◽  
Vol 95 (4) ◽  
pp. 1370-1377 ◽  
Author(s):  
Shin-ichiro Kagami ◽  
Hiroshi Nakajima ◽  
Kotaro Kumano ◽  
Kotaro Suzuki ◽  
Akira Suto ◽  
...  

Antigen-induced eosinophil recruitment into the airways of sensitized mice is mediated by CD4+ T cells and their cytokines, especially IL-5. In this study, we found that the antigen-induced airway eosinophilia was diminished in Stat5a-deficient (Stat5a−/−) mice and Stat5b-deficient (Stat5b−/−) mice. We also found that antigen-induced CD4+ T-cell infiltration and IL-5 production in the airways were diminished in Stat5a−/− mice and Stat5b−/− mice. Moreover, antigen-induced proliferation of splenocytes was diminished in Stat5a−/− mice and Stat5b−/− mice, suggesting that the generation of antigen-primed T cells may be compromised in Stat5a−/−mice and Stat5b−/− mice and this defect may account for the diminished antigen-induced T-cell infiltration into the airways. Interestingly, IL-4 and IL-5 production from anti-CD3–stimulated splenocytes was diminished in Stat5a−/− mice and Stat5b−/− mice. However, antigen-specific IgE and IgG1 production was diminished in Stat5a−/− mice but not in Stat5b−/− mice, whereas antigen-specific IgG2a production was increased in Stat5a−/− mice, suggesting the enhanced Th1 responses in Stat5a−/− mice. Finally, we found that eosinophilopoiesis induced by the administration of recombinant IL-5 was also diminished in Stat5a−/− mice and Stat5b−/− mice. Together, these results indicate that both Stat5a and Stat5b are essential for induction of antigen-induced eosinophil recruitment into the airways and that the defects in antigen-induced eosinophil recruitment in Stat5a−/− mice and Stat5b−/− mice result from both impaired IL-5 production in the airways and diminished IL-5 responsiveness of eosinophils.

1993 ◽  
Vol 177 (2) ◽  
pp. 573-576 ◽  
Author(s):  
I Iwamoto ◽  
H Nakajima ◽  
H Endo ◽  
S Yoshida

We have previously shown that antigen-induced eosinophil recruitment into the tissue of sensitized mice is mediated by CD4+ T cells and interleukin 5. To determine whether interferon gamma (IFN-gamma) regulates antigen-induced eosinophil recruitment into the tissue, we studied the effect of recombinant (r) murine IFN-gamma and of anti-IFN-gamma monoclonal antibody (mAb) on the eosinophil infiltration of the trachea induced by antigen inhalation in mice. The intraperitoneal administration of rIFN-gamma prevented antigen-induced eosinophil infiltration in the trachea of sensitized mice. The administration of rIFN-gamma also decreased antigen-induced CD4+ T cell but not CD8+ T cell infiltration in the trachea. On the other hand, pretreatment with anti-IFN-gamma mAb enhanced antigen-induced eosinophil and CD4+ T cell infiltration in the trachea. These results indicate that IFN-gamma regulates antigen-induced eosinophil recruitment into the tissue by inhibiting CD4+ T cell infiltration.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3684-3684
Author(s):  
Matthew J Ahearne ◽  
Kaljit S Bhuller ◽  
Roger Hew ◽  
Giovanna Roncador ◽  
Martin J.S. Dyer ◽  
...  

Abstract Abstract 3684 CD4+ T-cells can be distinguished into subsets on the basis of surface marker expression and growth factor production. Follicular helper T-cells (Tfh cells) are characterized by the co-expression of surface markers (CD4, ICOS, PD1 and CXCR5) and nuclear BCL6. Normal germinal centre formation requires Tfh cells but is repressed by another CD4+ T-cell subset, Tregs, (demonstrating CD4 and CD25 expression with nuclear FoxP3). The numbers and architecture of infiltrating T-cells predict clinical outcome in follicular lymphoma but although T-cells are a component of diffuse large B cell lymphoma (DLBCL), the relative numbers of CD4+ T-cells and their Tfh and Treg subsets or their association with clinical outcome is not known. We used immunohistochemistry to investigate infiltration by total CD4+, Treg and Tfh cells in cases (n=23) from one centre. The male:female was 1.3:1.0, the age range was 30 to 78 years (median 65 years) and the anticipated association between overall survival and LDH (logrank test, P=0.02) was observed. Patients were treated with R-CHOP with a 21-day cycle. Histological sections were stained with anti-CD4, anti-PD1 and anti-FoxP3 antibodies. For each antibody the area of staining was measured using ImageJ software from 10 high power fields from the same area of each histological section. Tfh cells were identified by strong surface expression of PD1 and Tregs by nuclear expression of FoxP3. CD4+ T-cell infiltration varied by ∼50-fold, and could be diffuse or focal. In 13 cases (57%) the majority of CD4+ T-cells were neither FoxP3+ nor PD1+. Total CD4+ T-cell numbers were positively correlated with FoxP3 (P=0.04) (Figure 1) and with PD1 (P=0.009) (Figure 2) expressing cells suggesting that these subsets were expanded as part of a reaction to the lymphoma capable of stimulating several CD4+ T-cell subsets. High CD4+ (Figure 3) and PD1+ staining predicted good clinical outcome (logrank test, P=0.08) with median survival not being reached at 5 years, but the amount of FoxP3+ staining appeared to be a superior prognostic marker (logrank test, P=0.0069) (Figure 4). There was no association between the cell of origin classification of DLBCL (GCB or ABC) as defined immunohistochemically, and CD4, FoxP3 or PD1 expression. In summary, we have shown that numbers of infiltrating CD4+ T-cells vary between cases of DLBCL and comprises several T-cell subsets including Treg and Tfh cells. No consensus has been reached on the clinical significance of FoxP3+ cell infiltration in DLBCL. Whilst some workers have shown FoxP3 to be associated with a good clinical outcome (Tzankov A., et al. 2008; Lee N., et al. 2008), others have not found a relationship to prognosis (Hasselblom S. et al., 2007). Our data shows that the FoxP3+ Treg cell subset is associated with good clinical outcome but surprisingly we found that both increased total CD4+ T-cells and PD1+ Tfh cells also carry a good prognosis. Disclosures: Wagner: Roche: Honoraria.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Stephanie M. Dillon ◽  
Tezha A. Thompson ◽  
Allison J. Christians ◽  
Martin D. McCarter ◽  
Cara C. Wilson

Abstract Background The etiology of the low-level chronic inflammatory state associated with aging is likely multifactorial, but a number of animal and human studies have implicated a functional decline of the gastrointestinal immune system as a potential driver. Gut tissue-resident memory T cells play critical roles in mediating protective immunity and in maintaining gut homeostasis, yet few studies have investigated the effect of aging on human gut T cell immunity. To determine if aging impacted CD4 T cell immunity in the human large intestine, we utilized multi-color flow cytometry to measure colonic lamina propria (LP) CD4 T cell frequencies and immune-modulatory marker expression in younger (mean ± SEM: 38 ± 1.5 yrs) and older (77 ± 1.6 yrs) adults. To determine cellular specificity, we evaluated colon LP CD8 T cell frequency and phenotype in the same donors. To probe tissue specificity, we evaluated the same panel of markers in peripheral blood (PB) CD4 T cells in a separate cohort of similarly aged persons. Results Frequencies of colonic CD4 T cells as a fraction of total LP mononuclear cells were higher in older persons whereas absolute numbers of colonic LP CD4 T cells per gram of tissue were similar in both age groups. LP CD4 T cells from older versus younger persons exhibited reduced CTLA-4, PD-1 and Ki67 expression. Levels of Bcl-2, CD57, CD25 and percentages of activated CD38+HLA-DR+ CD4 T cells were similar in both age groups. In memory PB CD4 T cells, older age was only associated with increased CD57 expression. Significant age effects for LP CD8 T cells were only observed for CTLA-4 expression, with lower levels of expression observed on cells from older adults. Conclusions Greater age was associated with reduced expression of the co-inhibitory receptors CTLA-4 and PD-1 on LP CD4 T cells. Colonic LP CD8 T cells from older persons also displayed reduced CTLA-4 expression. These age-associated profiles were not observed in older PB memory CD4 T cells. The decline in co-inhibitory receptor expression on colonic LP T cells may contribute to local and systemic inflammation via a reduced ability to limit ongoing T cell responses to enteric microbial challenge.


Immuno ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 119-131
Author(s):  
Jana Palmowski ◽  
Kristina Gebhardt ◽  
Thomas Reichel ◽  
Torsten Frech ◽  
Robert Ringseis ◽  
...  

CD4+ T cells are sensitive to peripheral changes of cytokine levels and metabolic substrates such as glucose and lactate. This study aimed to analyze whether factors released after exercise alter parameters of human T cell metabolism, specifically glycolysis and oxidative phosphorylation. We used primary human CD4+ T cells activated in the presence of autologous serum, which was collected before (CO) and after a 30-min exercise intervention (EX). In the course of activation, cells and supernatants were analyzed for cell viability and diameter, real-time oxygen consumption by using PreSens Technology, mRNA expression of glycolytic enzymes and complexes of the electron transport chain by real-time PCR, glucose, and lactate levels in supernatants, and in vitro differentiation by flow cytometry. EX did not alter T cell phenotype, viability, or on-blast formation. Similarly, no difference between CO and EX were found for CD4+ T cell activation and cellular oxygen consumption. In contrast, higher levels of glucose were found after 48 h activation in EX conditions. T cells activated in autologous exercise serum expressed lower HK1 mRNA and higher IFN-γ receptor 1. We suggest that the exercise protocol used was not sufficient to destabilize the immune metabolism of T cells. Therefore, more intense and prolonged exercise should be used in future studies.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A52-A52
Author(s):  
Elen Torres ◽  
Stefani Spranger

BackgroundUnderstanding the interactions between tumor and immune cells is critical for improving current immunotherapies. Pre-clinical and clinical evidence has shown that failed T cell infiltration into lung cancer lesions might be associated with low responsiveness towards checkpoint blockade.1 For this reason, it is necessary to characterize not only the phenotype of T cells in tumor-bearing lungs but also their spatial location in the tumor microenvironment (TME). Multiplex immunofluorescence staining allows the simultaneous use of several cell markers to study the state and the spatial location of cell populations in the tissue of interest. Although this technique is usually applied to thin tissue sections (5 to 12 µm), the analysis of large tissue volumes may provide a better understanding of the spatial distribution of cells in relation to the TME. Here, we analyzed the number and spatial distribution of cytotoxic T cells and other immune cells in the TME of tumor-bearing lungs, using both 12 µm sections and whole-mount preparations imaged by confocal microscopy.MethodsLung tumors were induced in C57BL/6 mice by tail vein injection of a cancer cell line derived from KrasG12D/+ and Tp53-/- mice. Lung tissue with a diverse degree of T cell infiltration was collected after 21 days post tumor induction. Tissue was fixed in 4% PFA, followed by snap-frozen for sectioning. Whole-mount preparations were processed according to Weizhe Li et al. (2019) 2 for tissue clearing and multiplex volume imaging. T cells were labeled with CD8 and FOXP3 antibodies to identify cytotoxic or regulatory T cells, respectively. Tumor cells were labeled with a pan-Keratin antibody. Images were acquired using a Leica SP8 confocal microscope. FIJI3 and IMARIS were used for image processing.ResultsWe identified both cytotoxic and regulatory T cell populations in the TME using thin sections and whole-mount. However, using whole-mount after tissue clearing allowed us to better evaluate the spatial distribution of the T cell populations in relation to the tumor structure. Furthermore, tissue clearance facilitates the imaging of larger volumes using multiplex immunofluorescence.ConclusionsAnalysis of large lung tissue volumes provides a better understanding of the location of immune cell populations in relation to the TME and allows to study heterogeneous immune infiltration on a per-lesion base. This valuable information will improve the characterization of the TME and the definition of cancer-immune phenotypes in NSCLC.ReferencesTeng MW, et al., Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res 2015;75(11): p. 2139–45.Li W, Germain RN, and Gerner MY. High-dimensional cell-level analysis of tissues with Ce3D multiplex volume imaging. Nat Protoc 2019;14(6): p. 1708–1733.Schindelin J, et al, Fiji: an open-source platform for biological-image analysis. Nat Methods 2012;9(7): p. 676–82.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Annemarie Noordeloos ◽  
Elza van Deel ◽  
Denise Hermes ◽  
Maarten L Simoons ◽  
Dirk J Duncker ◽  
...  

Introduction: Although expression of heme oxygenase-1 (HO1) attenuates transplantation arteriosclerosis, the mechanism by which HO1 exerts its protective effect remains unclear. We studied the effect of HO1-deficient vs. wildtype (WT) dendritic cells (DCs) on the T-cell priming response and outcome in a murine transplant arteriosclerosis model. Methods: At day 0 C57bl6 mice received either WT (n=6) or HO1-knockout DCs (n=6) pre-sensitized with Balb/c splenocytes lysate to accelerate the development of arteriosclerosis. At day 10 an aorta segment from Balb/c mice was transplanted into the carotid artery position of C57Bl6 mice.14 days after transplantation allografts were excised and processed for immunohistochemical analysis. Results: HO1-deficient DCs significantly increased neointimal hyperplasia as compared to WT DCs (116995 vs. 46114μm 2 P<0.05) and incidence of intima formation (83 vs. 50% in WT DC). HO1 deficient DCs also increased medial thickeness (15936 vs.12034 μm 2 P<0.05) and intimal VSMCs content (76 vs. 46% P<0.05) and resulted in more prominent medial cell infiltration (461μm 2 vs. 232μm 2 P<0.05). Although HO1 deficient and WT DCs could be detected in allografts, HO1-nullizygous DCs induced an increase in CD4+ T-cell infiltration (9.5 vs. 0.1% in WT P<0.05) concomitant to a decrease of CD8+ T cell infiltration (8 vs.14%, P<0.05). In line with these observations Affymetrix microarray analysis confirmed that HO1 deletion in DCs was associated with a significant downregulation of MHCII-H2A expression (associated with CD4+T-cell activation) and induction of inhibitors of MHCII expression (including IK protein) whereas MHC I expression remained unchanged. Conclusions: HO1 expression in dendritic cells increases vascular cell infiltration with a higher CD8+/CD4+ T-cell ratio by stabilizing MHCII expression in vascular allografts resulting in inhibition of neointima formation and hence improved allograft survival.


2009 ◽  
Vol 83 (13) ◽  
pp. 6566-6577 ◽  
Author(s):  
Katherine A. Richards ◽  
Francisco A. Chaves ◽  
Andrea J. Sant

ABSTRACT The specificity of the CD4 T-cell immune response to influenza virus is influenced by the genetic complexity of the virus and periodic encounters with variant subtypes and strains. In order to understand what controls CD4 T-cell reactivity to influenza virus proteins and how the influenza virus-specific memory compartment is shaped over time, it is first necessary to understand the diversity of the primary CD4 T-cell response. In the study reported here, we have used an unbiased approach to evaluate the peptide specificity of CD4 T cells elicited after live influenza virus infection. We have focused on four viral proteins that have distinct intracellular distributions in infected cells, hemagglutinin (HA), neuraminidase (NA), nucleoprotein, and the NS1 protein, which is expressed in infected cells but excluded from virion particles. Our studies revealed an extensive diversity of influenza virus-specific CD4 T cells that includes T cells for each viral protein and for the unexpected immunogenicity of the NS1 protein. Due to the recent concern about pandemic avian influenza virus and because CD4 T cells specific for HA and NA may be particularly useful for promoting the production of neutralizing antibody to influenza virus, we have also evaluated the ability of HA- and NA-specific CD4 T cells elicited by a circulating H1N1 strain to cross-react with related sequences found in an avian H5N1 virus and find substantial cross-reactivity, suggesting that seasonal vaccines may help promote protection against avian influenza virus.


Author(s):  
Njabulo Ngwenyama ◽  
Annet Kirabo ◽  
Mark Aronovitz ◽  
Francisco Velázquez ◽  
Francisco Carrillo-Salinas ◽  
...  

Background: Despite the well-established association between T cell-mediated inflammation and non-ischemic heart failure (HF), the specific mechanisms triggering T cell activation during the progression of HF and the antigens involved are poorly understood. We hypothesized that myocardial oxidative stress induces the formation of isolevuglandin (IsoLG)-modified proteins that function as cardiac neoantigens to elicit CD4+ T cell receptor (TCR) activation and promote HF. Methods: We used transverse aortic constriction (TAC) in mice to trigger myocardial oxidative stress and T cell infiltration. We profiled the TCR repertoire by mRNA sequencing of intramyocardial activated CD4+ T cells in Nur77 GFP reporter mice, which transiently express GFP upon TCR engagement. We assessed the role of antigen presentation and TCR specificity in the development of cardiac dysfunction using antigen presentation-deficient MhcII -/- mice, and TCR transgenic OTII mice that lack specificity for endogenous antigens. We detected IsoLG-protein adducts in failing human hearts. We also evaluated the role of reactive oxygen species (ROS) and IsoLGs in eliciting T cell immune responses in vivo by treating mice with the antioxidant TEMPOL, and the IsoLG scavenger 2-hydroxybenzylamine (2-HOBA) during TAC, and ex-vivo in mechanistic studies of CD4+ T cell proliferation in response to IsoLG-modified cardiac proteins. Results: We discovered that TCR antigen recognition increases in the left ventricle (LV) as cardiac dysfunction progresses, and identified a limited repertoire of activated CD4+ T cell clonotypes in the LV. Antigen presentation of endogenous antigens was required to develop cardiac dysfunction since MhcII -/- mice reconstituted with CD4+ T cells, and OTII mice immunized with their cognate antigen were protected from TAC-induced cardiac dysfunction despite the presence of LV-infiltrated CD4+ T cells. Scavenging IsoLGs with 2-HOBA reduced TCR activation and prevented cardiac dysfunction. Mechanistically, cardiac pressure overload resulted in ROS dependent dendritic cell accumulation of IsoLG-protein adducts which induced robust CD4+ T cell proliferation. Conclusions: Collectively, our study demonstrates an important role of ROS-induced formation of IsoLG-modified cardiac neoantigens that lead to TCR-dependent CD4+ T cell activation within the heart.


Sign in / Sign up

Export Citation Format

Share Document