Impaired dendritic cell maturation in patients with chronic, but not resolved, hepatitis C virus infection

Blood ◽  
2001 ◽  
Vol 97 (10) ◽  
pp. 3171-3176 ◽  
Author(s):  
Susanne Auffermann-Gretzinger ◽  
Emmet B. Keeffe ◽  
Shoshana Levy

Abstract Dendritic cells (DCs) are important for the initiation of immune responses to foreign antigens. Their antigen uptake and presentation capacities enable them to prime and activate T cells. Immature DCs capture antigens; however, they must be activated to mature before serving as efficient antigen-presenting cells. The antigen-presenting capacity of DCs can be diminished during viral infection and as a consequence of tumor formation. Chronic infection with hepatitis C virus (HCV) has been shown to affect the allostimulatory function of DCs. In this study, it is demonstrated that monocyte-derived DCs from patients with chronic HCV infection do not respond to maturation stimuli. Instead, they maintain their immature phenotype, reflected by the pattern of cell surface markers and by their continued capacity to uptake antigen. Moreover, their allostimulatory abilities are impaired compared with those of mature DCs derived from healthy donors. To investigate a possible correlation between viral clearance and this DC maturation defect, patients with resolved HCV infection after a course of antiviral therapy were studied. Results demonstrate that DCs from patients who cleared HCV behaved like DCs from healthy donors: in response to maturation stimuli, they decrease antigen uptake, up-regulate expression of appropriate surface markers, and are potent stimulators of allogeneic T cells.

2011 ◽  
Vol 85 (9) ◽  
pp. 4633-4633
Author(s):  
V. Kasprowicz ◽  
J. S. zur Wiesch ◽  
T. Kuntzen ◽  
B. E. Nolan ◽  
S. Longworth ◽  
...  

2009 ◽  
Vol 83 (11) ◽  
pp. 5693-5707 ◽  
Author(s):  
Hua Liang ◽  
Rodney S. Russell ◽  
Nicole L. Yonkers ◽  
David McDonald ◽  
Benigno Rodriguez ◽  
...  

ABSTRACT Dendritic cells (DCs) are reported to be functionally deficient during chronic hepatitis C virus (HCV) infection. Differing results have been reported on direct effects of intact replicative-form HCV on DC function. To better understand the effect of HCV on DC function, we treated freshly purified human myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) with HCV JFH1. We found that HCV upregulated mDC maturation marker (CD83, CD86, and CD40) expression and did not inhibit Toll-like receptor 3 (TLR3) ligand [poly(I:C)]-induced mDC maturation, a finding consistent with the phenotype of DCs from HCV-infected subjects. At the same time, HCV JFH1 inhibited the ability of poly(I:C)-treated mDCs to activate naive CD4 T cells. In contrast, although there was no direct effect of virus on pDC maturation, HCV JFH1 inhibited TLR7 ligand (R848)-induced pDC CD40 expression, and this was associated with impaired ability to activate naive CD4 T cells. Parallel experiments with recombinant HCV proteins indicated HCV core protein may be responsible for a portion of the activity. Furthermore, HCV-mediated mDC maturation was dependent upon CD81-E2 interaction and, in part, TLR2. Using UV-treated HCV, we show that HCV-mediated mDC and pDC maturation is virus replication independent and, using strand specific PCR, we found no evidence for HCV replication within DCs. Because these effects of HCV on DC subset maturation and function in part recapitulate direct ex vivo analysis of DCs in chronic HCV infection, the mechanisms described here likely account for a portion of the DC subset defects observed in vivo.


2001 ◽  
Vol 34 ◽  
pp. 115
Author(s):  
C.A. Schirren ◽  
N.H. Gruener ◽  
M.C. Jung ◽  
R. Zachoval ◽  
J.T. Gerlach ◽  
...  

2008 ◽  
Vol 82 (20) ◽  
pp. 9808-9822 ◽  
Author(s):  
Henry Radziewicz ◽  
Chris C. Ibegbu ◽  
Huiming Hon ◽  
Melissa K. Osborn ◽  
Kamil Obideen ◽  
...  

ABSTRACT A majority of patients infected with hepatitis C virus (HCV) do not sustain an effective T-cell response, and viremia persists. The mechanism leading to failure of the HCV-specific CD8+ T-cell response in patients developing chronic infection is unclear. We investigated apoptosis susceptibility of HCV-specific CD8+ T cells during the acute and chronic stages of infection. Although HCV-specific CD8+ T cells in the blood during the acute phase of infection and in the liver during the chronic phase were highly activated and expressed an effector phenotype, the majority was undergoing apoptosis. In contrast, peripheral blood HCV-specific CD8+ T cells during the chronic phase expressed a resting memory phenotype. Apoptosis susceptibility of HCV-specific CD8+ T cells was associated with very high levels of programmed death-1 (PD-1) and low CD127 expression and with significant functional T-cell deficits. Further evaluation of the “death phase” of HCV-specific CD8+ T cells during acute HCV infection showed that the majority of cells were dying by a process of cytokine withdrawal, mediated by activated caspase 9. Contraction during the acute phase occurred rapidly via this process despite the persistence of the virus. Remarkably, in the chronic phase of HCV infection, at the site of infection in the liver, a substantial frequency of caspase 9-mediated T-cell death was also present. This study highlights the importance of cytokine deprivation-mediated apoptosis with consequent down-modulation of the immune response to HCV during acute and chronic infections.


Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 683 ◽  
Author(s):  
David Wolski ◽  
Georg M. Lauer

The hepatitis C virus is unique among chronic viral infections in that an acute outcome with complete viral elimination is observed in a minority of infected patients. This unique feature allows direct comparison of successful immune responses with those that fail in the setting of the same human infection. Here we review how this scenario can be used to achieve better understanding of transcriptional regulation of T-cell differentiation. Specifically, we discuss results from a study comparing transcriptional profiles of hepatitis C virus (HCV)-specific CD8 T-cells during early HCV infection between patients that do and do not control and eliminate HCV. Identification of early gene expression differences in key T-cell differentiation molecules as well as clearly distinct transcriptional networks related to cell metabolism and nucleosomal regulation reveal novel insights into the development of exhausted and memory T-cells. With additional transcriptional studies of HCV-specific CD4 and CD8 T-cells in different stages of infection currently underway, we expect HCV infection to become a valuable model disease to study human immunity to viruses.


2021 ◽  
Vol 10 (2) ◽  
pp. 221
Author(s):  
Pil Soo Sung ◽  
Eui-Cheol Shin

Direct-acting antiviral agents (DAAs) that allow for rapid clearance of hepatitis C virus (HCV) may evoke immunological changes. Some cases of rapid de novo hepatocellular carcinoma (HCC) development or early recurrence of HCC after DAA treatment have been reported. During chronic HCV infection, natural killer (NK) cells exhibited a deviant functional phenotype with decreased production of antiviral cytokines and increased cytotoxicity; however, DAA treatment rapidly decreased their cytotoxic function. Effective DAA therapy also suppressed the intrahepatic activation of macrophages/monocytes. This was followed by a decrease in mucosal-associated invariant T (MAIT) cell cytotoxicity without normalization of cytokine production. Rapid changes in the phenotypes of NK and MAIT cells after DAA treatment may attenuate the cytotoxicity of these cells against cancer cells. Moreover, DAA treatment did not normalize the increased frequencies of regulatory T cells even after clearance of HCV infection. Thus, the persistently increased frequency of regulatory T cells may contribute to a local immunosuppressive milieu and hamper the clearance of cancer cells. This review will focus on recent studies describing the changes in innate and adaptive immune responses after DAA treatment in patients with chronic HCV infection in the context of de novo occurrence or recurrence of HCC.


2002 ◽  
Vol 76 (10) ◽  
pp. 5062-5070 ◽  
Author(s):  
Pablo Sarobe ◽  
Juan José Lasarte ◽  
Noelia Casares ◽  
Ascensión López-Díaz de Cerio ◽  
Elena Baixeras ◽  
...  

ABSTRACT Patients infected with hepatitis C virus (HCV) have an impaired response against HCV antigens while keeping immune competence for other antigens. We hypothesized that expression of HCV proteins in infected dendritic cells (DC) might impair their antigen-presenting function, leading to a defective anti-HCV T-cell immunity. To test this hypothesis, DC from normal donors were transduced with an adenovirus coding for HCV core and E1 proteins and these cells (DC-CE1) were used to stimulate T lymphocytes. DC-CE1 were poor stimulators of allogeneic reactions and of autologous primary and secondary proliferative responses. Autologous T cells stimulated with DC-CE1 exhibited a pattern of incomplete activation characterized by enhanced CD25 expression but reduced interleukin 2 production. The same pattern of incomplete lymphocyte activation was observed in CD4+ T cells responding to HCV core in patients with chronic HCV infection. However, CD4+ response to HCV core was normal in patients who cleared HCV after alpha interferon therapy. Moreover, a normal CD4+ response to tetanus toxoid was found in both chronic HCV carriers and patients who had eliminated the infection. Our results suggest that expression of HCV structural antigens in infected DC disturbs their antigen-presenting function, leading to incomplete activation of anti-HCV-specific T cells and chronicity of infection. However, presentation of unrelated antigens by noninfected DC would allow normal T-cell immunity to other pathogens.


Sign in / Sign up

Export Citation Format

Share Document