scholarly journals Landscape of driver mutations and their clinical impacts in pediatric B-cell precursor acute lymphoblastic leukemia

2020 ◽  
Vol 4 (20) ◽  
pp. 5165-5173
Author(s):  
Hiroo Ueno ◽  
Kenichi Yoshida ◽  
Yusuke Shiozawa ◽  
Yasuhito Nannya ◽  
Yuka Iijima-Yamashita ◽  
...  

Abstract Recent genetic studies using high-throughput sequencing have disclosed genetic alterations in B-cell precursor acute lymphoblastic leukemia (B-ALL). However, their effects on clinical outcomes have not been fully investigated. To address this, we comprehensively examined genetic alterations and their prognostic impact in a large series of pediatric B-ALL cases. We performed targeted capture sequencing in a total of 1003 pediatric patients with B-ALL from 2 Japanese cohorts. Transcriptome sequencing (n = 116) and/or array-based gene expression analysis (n = 120) were also performed in 203 (84%) of 243 patients who were not categorized into any disease subgroup by panel sequencing or routine reverse transcription polymerase chain reaction analysis for major fusions in B-ALL. Our panel sequencing identified novel recurrent mutations in 2 genes (CCND3 and CIC), and both had positive correlations with ETV6-RUNX1 and hypodiploid ALL, respectively. In addition, positive correlations were also newly reported between TCF3-PBX1 ALL with PHF6 mutations. In multivariate Cox proportional hazards regression models for overall survival, TP53 mutation/deletion, hypodiploid, and MEF2D fusions were selected in both cohorts. For TP53 mutations, the negative effect on overall survival was confirmed in an independent external cohort (n = 466). TP53 mutation was frequently found in IGH-DUX4 (5 of 57 [9%]) ALL, with 4 cases having 17p LOH and negatively affecting overall survival therein, whereas TP53 mutation was not associated with poor outcomes among NCI (National Cancer Institute) standard risk (SR) patients. A conventional treatment approach might be enough, and further treatment intensification might not be necessary, for patients with TP53 mutations if they are categorized into NCI SR.

2014 ◽  
Vol 55 (7) ◽  
pp. 1501-1509 ◽  
Author(s):  
Thayana Conceição Barbosa ◽  
Francianne Gomes Andrade ◽  
Bruno Almeida Lopes ◽  
Camilla Fernanda Gomes de Andrade ◽  
Marcela Braga Mansur ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (4) ◽  
pp. 1041-1051 ◽  
Author(s):  
Louise van der Weyden ◽  
George Giotopoulos ◽  
Alistair G. Rust ◽  
Louise S. Matheson ◽  
Frederik W. van Delft ◽  
...  

Abstract The t(12;21) translocation that generates the ETV6-RUNX1 (TEL-AML1) fusion gene, is the most common chromosomal rearrangement in childhood cancer and is exclusively associated with B-cell precursor acute lymphoblastic leukemia (BCP-ALL). The translocation arises in utero and is necessary but insufficient for the development of leukemia. Single-nucleotide polymorphism array analysis of ETV6-RUNX1 patient samples has identified multiple additional genetic alterations; however, the role of these lesions in leukemogenesis remains undetermined. Moreover, murine models of ETV6-RUNX1 ALL that faithfully recapitulate the human disease are lacking. To identify novel genes that cooperate with ETV6-RUNX1 in leukemogenesis, we generated a mouse model that uses the endogenous Etv6 locus to coexpress the Etv6-RUNX1 fusion and Sleeping Beauty transposase. An insertional mutagenesis screen was performed by intercrossing these mice with those carrying a Sleeping Beauty transposon array. In contrast to previous models, a substantial proportion (20%) of the offspring developed BCP-ALL. Isolation of the transposon insertion sites identified genes known to be associated with BCP-ALL, including Ebf1 and Epor, in addition to other novel candidates. This is the first mouse model of ETV6-RUNX1 to develop BCP-ALL and provides important insight into the cooperating genetic alterations in ETV6-RUNX1 leukemia.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1569 ◽  
Author(s):  
Jan Starý ◽  
Jan Zuna ◽  
Marketa Zaliova

Traditionally, genetic abnormalities detected by conventional karyotyping, fluorescencein situhybridization, and polymerase chain reaction divided childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) into well-established genetic subtypes. This genetic classification has been prognostically relevant and thus used for the risk stratification of therapy. Recently, the introduction of genome-wide approaches, including massive parallel sequencing methods (whole-genome, -exome, and -transcriptome sequencing), enabled extensive genomic studies which, together with gene expression profiling, largely expanded our understanding of leukemia pathogenesis and its heterogeneity. Novel BCP-ALL subtypes have been described. Exact identification of recurrent genetic alterations and their combinations facilitates more precise risk stratification of patients. Discovery of targetable lesions in subsets of patients enables the introduction of new treatment modalities into clinical practice and stimulates the transfer of modern methods from research laboratories to routine practice.


Author(s):  
Jianfeng Li ◽  
Yuting Dai ◽  
Liang Wu ◽  
Ming Zhang ◽  
Wen Ouyang ◽  
...  

AbstractB-cell precursor acute lymphoblastic leukemia (BCP-ALL) is characterized by genetic alterations with high heterogeneity. Precise subtypes with distinct genomic and/or gene expression patterns have been recently revealed using high-throughput sequencing technology. Most of these profiles are associated with recurrent non-overlapping rearrangements or hotspot point mutations that are analogous to the established subtypes, such as DUX4 rearrangements, MEF2D rearrangements, ZNF384/ZNF362 rearrangements, NUTM1 rearrangements, BCL2/MYC and/or BCL6 rearrangements, ETV6-RUNX1-like gene expression, PAX5alt (diverse PAX5 alterations, including rearrangements, intragenic amplifications, or mutations), and hotspot mutations PAX5 (p.Pro80Arg) with biallelic PAX5 alterations, IKZF1 (p.Asn159Tyr), and ZEB2 (p.His1038Arg). These molecular subtypes could be classified by gene expression patterns with RNA-seq technology. Refined molecular classification greatly improved the treatment strategy. Multiagent therapy regimens, including target inhibitors (e.g., imatinib), immunomodulators, monoclonal antibodies, and chimeric antigen receptor T-cell (CAR-T) therapy, are transforming the clinical practice from chemotherapy drugs to personalized medicine in the field of risk-directed disease management. We provide an update on our knowledge of emerging molecular subtypes and therapeutic targets in BCP-ALL.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5281-5281
Author(s):  
Jordi Ribera ◽  
Mar Mallo ◽  
Lurdes Zamora ◽  
Neus Solanes ◽  
Susana Vives ◽  
...  

Abstract Background & Objective: Acute Lymphoblastic Leukemia (ALL) is an aggressive neoplasia characterized by a high genetic heterogeneity both at diagnosis and at relapse. Due to the high incidence of relapse in adults and the dismal prognosis beyond recurrence, diagnosis and relapse samples of adult ALL patients were carefully analyzed in order to identify genetic alterations related with drug resistance and disease progression. Patients & Methods: Paired diagnosis-relapse bone marrow samples from 5 adult B-cell precursor ALL (B-ALL) patients were analyzed (Ph+ ALL [n=2], normal karyotype [n=1], t(1;19)(q23;p13) [n=1] and t(8;13)(p21-22;q12) [n=1]). Copy Number Alterations (CNA) were studied with Multiplex Ligation-dependent Probe Amplification (MLPA, kits P-335 and P-202 from MRC-Holland, Amsterdam, Netherlands) and Affymetrix CytoScan HD arrays (Affymetrix, Santa Clara, USA). In the array analyses, only the CNA that encompassed at least 25 markers were considered significant. Results: Regarding karyotype, 2 patients (1 Ph+ and 1 t(1;19) at diagnosis) showed the same chromosomal translocations within a complex karyotype at relapse. On the contrary, the other Ph+ patient showed a normal karyotype at relapse, while 2 patients did not experience any karyotypic change. Regarding immunophenotype, 3/5 patients showed changes on antigen expression from diagnosis to relapse such as expression of markers of immaturity (CD34, TdT positivity and CD38 negativity), loss of lymphoid markers (CD20 and CD22) and/or acquisition of myeloid markers (CD33 and CD66c). Concerning CNA, all relapse samples were genetically related to the diagnosis clone (common clonal origin). All relapsed populations lost CNA detected at diagnosis and/or acquired new CNA but retained some of the CNA showed at diagnosis revealing clonal evolution from ancestral clones. CNA in B-ALL key genes involved in lymphoid development (IKZF1, PAX5, EBF1,VPREB1 and BLNK), proliferation (CDKN2A/B, RB1, CRLF2, C-MYC and ERG), apoptosis (BTG1, TP53 and ATM), hematopoiesis transcription factors (ETV6 and MLL) and histone modifications (KDM6A) were detected, among others. Losses in 9p were the most recurrent event both at diagnosis and at relapse. CDKN2A/B deletions were observed in all relapse samples (3/5 in homozygosis) while PAX5 deletions were present in 4/5 relapsed cases. Interestingly, all relapse samples showed CNA favoring the activation and/or the transcription of proteins involved in the Akt/C-MYC signaling pathway. Another common feature (4/5 patients) were CNA affecting genes involved in drug transport such as several ABC transporter genes and genes related to drug resistance such as PRKDC and RUNX1T1 (in 3/4 of the cases, the CNA appeared exclusively at relapse or were already present at diagnosis and increased their frequency at relapse). CNA in genes that may confer stem cell characteristics (EGR1 and USP16) were another recurrent event at relapse (3/5 samples, 2 of them were not present at diagnosis). CNA affecting the X/Y PAR1 region (CRLF2, CSF2RA and IL3RA) or VPREB1 at 22q11.22 were detected in 3/5 relapse samples, respectively. An important apoptosis cluster at 11q21q24.2 (BIRC2/3, CASP1/4/5/12, hsa-miR-34b/c, ATM and BTG4) was lost in 2/5 relapse samples (one of them was not detected at diagnosis and the other increased its frequency at relapse). Finally, ETV6 deletion (12p13.2) and duplication of Xq26.2q28 (containing ABCD1, BCAP31 and genes coding for several cancer/testis antigens) were observed in 2 relapse samples. Conclusions: SNP arrays analysis of paired B-cell precursor ALL samples at diagnosis and at relapse allows the identification of genetic alterations potentially related with ALL progression. The systematic analysis of relapse samples could contribute to the identification of specific genetic targets with potential therapeutic impact for each patient (personalized medicine). Disclosures Martínez-López: Novartis: Honoraria, Speakers Bureau. Sole:Celgene: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2622-2622
Author(s):  
Ilaria Iacobucci ◽  
Anna Ferrari ◽  
Margherita Perricone ◽  
Valentina Robustelli ◽  
Cristina Papayannidis ◽  
...  

Abstract Introduction High-resolution genome-wide profiling analysis of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) samples has identified many novel somatic genetic alterations, several of which have clear implications for risk stratification or future therapeutic targeting. However, most of the studies focused on children and therefore a deep molecular characterization of adults is still challenging, especially for those cases lacking recurrent fusion genes. Subjects and Methods In order to shed light on the molecular features of this ALL subgroup, we retrospectively analyzed 28 newly diagnosed BCR-ABL1-negative BCP-ALL subjects (19 males/9 females; median age 41.5 years; negative for known fusion genes) and 28 BCR-ABL1-positive BCP-ALL subjects as a comparison group, since it represents the most frequent genetic subgroup in adults with ALL. In BCR-ABL1-negative ALL karyotype was normal in 10/28 (36%), showed abnormalities in 5/28 (18%) and failed or was not available in 13/28 (46%) cases. The overall survival rate was very poor with a median of 14 months (range, 1-75). We analyzed copy number alterations (CNA) of IKZF1, CDKN2A/B, PAX5, EBF1, ETV6, BTG1, RB1, and genes within PAR1: CRLF2, CSF2RA, IL3RA by the SALSA MLPA kit P335 IKZF1 (MRC Holland). In addition, mutation status was assessed for TP53, CRLF2, JAK2, LEF1, PAX5 and IL7R by next-generation deep-sequencing (NGS) (Roche Applied Science; IRON-II study oligonucleotide primer plates). Positivity for newly described BCR-JAK2, PAX5-JAK2, ETV6-ABL1, EBF1-PDGFRB, NUP-ABL1 gene fusions occurring in BCR-ABL1-like ALL (Roberts KG et al., Cancer Cell. 2012) was assessed by PCR amplification and sequencing. Finally, SNP arrays (SNP 6.0, Affymetrix) and gene expression profile analyses (GeneChip® Human Transcriptome Array 2.0) were performed to more fully assess genomic complexity. Results Overall, 76% of BCR-ABL1-negative subjects showed an abnormality of at least one of the analyzed genes: 7 (25%) had one, 4 (14%) had two, 6 (21%) had three, and 6 (21%) had four or more alterations. In subjects showing no abnormalities, SNP arrays analysis revealed amplifications of chromosome 1q in 2/6 cases (33%). Deletions of CDKN2A/B were the most frequent (39%) and in 73%, they occurred together with other abnormalities, suggesting that multiple events are needed to induce the full leukemia phenotype. Other common CNA included: deletions of IKZF1 (25%), ETV6 (25%), PAX5 (14%), EBF1 (11%), PAR1 region (11%) and RB1 (7%). NGS showed mutations of TP53 in 18% of cases (W147*, V172L/G, G245C, Del244-246, D259Y), while JAK2 and CRLF2 were mutated in 7% (R683S/G) and 4% (F232C), respectively. No positivity for newly described fusion genes activating tyrosine kinase was confirmed. Importantly, subjects with no abnormalities showed better survival rates compared to those with one or more molecular alterations (p < 0.01). The BCR-ABL1-positive subgroup shared the same CNA of BCR-ABL1-negative cases, such as deletions of IKZF1 (71%), CDKN2A/B (21%), PAX5 (14%), BTG1 (11%), EBF1 (11%), and ETV6 (4%), but they did not show mutations in the analyzed genes. Conclusions BCP-ALL lacking recurrent fusion genes is a highly heterogeneous and complex disease. Current diagnostic procedures need to be revised to improve risk assessment and to guide therapeutic decisions. Supported by AIL, AIRC, PRIN 2010-2011, Programma Ricerca Regione-Università 2010-2012, FP7 “NGS-PTL” project. Disclosures: Soverini: Bristol-Myers Squibb: Consultancy; Novartis: Consultancy; ARIAD: Consultancy. Chiaretti:Roche Diagnostics: Research Support Other. Kohlmann:MLL Munich Leukemia Laboratory: Employment; Roche Diagnostics: Honoraria. Martinelli:Novartis: Consultancy, Speaker fees Other; Bristol-Myers Squibb: Consultancy, Speaker fees, Speaker fees Other; Pfizer: Consultancy, Speaker fees, Speaker fees Other; Ariad: Consultancy, Speaker fees, Speaker fees Other.


HemaSphere ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. e318
Author(s):  
Jiangyan Yu ◽  
Esmé Waanders ◽  
Simon V. van Reijmersdal ◽  
Željko Antić ◽  
Charlotte M. van Bosbeek ◽  
...  

2021 ◽  
Vol 22 (6) ◽  
pp. 3127
Author(s):  
Oriol de Barrios ◽  
Maribel Parra

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a highly aggressive malignancy, with poorer prognosis in infants than in adults. A genetic signature has been associated with this outcome but, remarkably, leukemogenesis is commonly triggered by genetic alterations of embryonic origin that involve the deregulation of chromatin remodelers. This review considers in depth how the alteration of epigenetic profiles (at DNA and histone levels) induces an aberrant phenotype in B lymphocyte progenitors by modulating the oncogenic drivers and tumor suppressors involved in key cancer hallmarks. DNA methylation patterns have been widely studied in BCP-ALL and their correlation with survival has been established. However, the effect of methylation on histone residues can be very different. For instance, methyltransferase KMT2A gene participates in chromosomal rearrangements with several partners, imposing an altered pattern of methylated H3K4 and H3K79 residues, enhancing oncogene promoter activation, and conferring a worse outcome on affected infants. In parallel, acetylation processes provide an additional layer of epigenetic regulation and can alter the chromatin conformation, enabling the binding of regulatory factors. Therefore, an integrated knowledge of all epigenetic disorders is essential to understand the molecular basis of BCP-ALL and to identify novel entry points that can be exploited to improve therapeutic options and disease prognosis.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4077-4077
Author(s):  
Hiroo Ueno ◽  
Kenichi Yoshida ◽  
Yusuke Shiozawa ◽  
Yasuhito Nannya ◽  
Yuka Iijima-Yamashita ◽  
...  

Abstract Introduction TP53 mutations in relapsed cases with pediatric acute lymphoblastic leukemia have been implicated in poor clinical outcomes. However, the prevalence and clinical significance of TP53 mutations at diagnosis have not been fully investigated. Such knowledge is essential for the care of patients, because treatment intensity is tailored to predictive prognosis, where increased attention has been directed toward de-escalation of treatment for the problem of long term effects and second malignancies in childhood cancer survivors. Methods Mutation status of TP53 was detected by targeted-capture sequencing of TP53 coding regions in 1,003 children with B-precursor ALL who had been treated in either of the two prospective clinical trials, JACLS (Japan Association of Childhood Leukemia Study) ALL-02 and TCCSG (Tokyo Children's Cancer Study Group) L04-16. Detection of common fusion genes, including BCR-ABL, ETV6-RUNX1, MLL-AF4, MLL-ENL, MLL-AF9, and TCF3-PBX1, were performed using qPCR assays. We designed SNP baits to analyze copy number status of chromosome 17, and also captured 662 probes tiling the entire IgH enhancer locus to identify IGH-DUX4 rearrangement. Result In total, 36 different non-silent coding TP53 mutations were identified in 30 (3%) patients, including 22 missense, 7 frameshift indel, 5 in-frame indel, and 2 nonsense mutations. All missense mutations were found in the core DNA-binding domain (n=21), except for one mutation, which affected the tetramerization motif. Variant allele frequencies (VAF) of TP53 mutations varied from 3% to 97% with 14 mutations showing < 10% VAFs. Showing a significant correlation with mutated TP53 (Odds ratio 20: 95%CI 6.4-61, P<0.001), loss of heterozygosity affecting the TP53 locus was observed in 11 (37%) cases and caused by del(17p) in most cases (n=10). We next evaluated clinical features of TP53-mutated cases. TP53 was most frequently mutated in Hypodiploid ALL (33% n=3), followed by MLL rearrangement (12% n=4), IGH-DUX4 (9% n=5), Others (3% n=8), TCF3-PBX1 (2% n=2), Hyperdiploid (2% n=6), and ETV6-RUNX1 (n=2 0.9%). TP53 mutations were not associated with age or white blood cell count at diagnosis. However, significantly more patients were categorized into National Cancer Institute (NCI) high risk (HR) category (Odds ratio 2.4: 95%CI 1.1-5.3, P = 0.03) and TP53 mutation was associated with a significantly shorter overall survival (OS) among NCI-HR patients (n = 16; HR for death, 6.3; 95% CI, 3.1-13; P<0.001). Five-year OS of NCI-HR patients with TP53 mutations was 44%, suggesting that early treatment intensification or alternative treatment strategies are warranted for these patients. TP53 mutations were also associated with a shorter OS in MLL rearrangement and IGH-DUX4 ALL. Particularly, 67% (n=4/6) of cases with any cause of death harbored TP53 mutation in IGH-DUX4 ALL. In contrast, TP53 mutation was not associated with shorter overall survival in NCI-SR cases. In Hyperdiploid ALL, 5 out of 6 cases with TP53 mutations were categorized into the NCI-SR category and were all alive. Prognostic impact of TP53 mutation was also investigated using recursive partitioning to generate a hierarchical prognostic model for OS by incorporating genetic subgroups and the NCI risk criteria. This model also demonstrated that the NCI risk criteria was the most important prognostic variable and TP53 mutation was used for stratification of patients only in the NCI-HR category. Conclusion TP53 mutations at diagnosis are common in Hypodiploid ALL and also found in a substantial fraction of MLL rearrangement and IGH-DUX4 ALL, where the mutations predict a poor prognosis. TP53 mutation is also found in NCI-SR cases but may not be associated with poor prognosis. Figure. Figure. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5283-5283
Author(s):  
Csongor Kiss ◽  
Bettina Kárai ◽  
Zsuzsanna Hevessy ◽  
Eszter Szánthó ◽  
László Csáthy ◽  
...  

Abstract Introduction: Previously we identified B-cell lineage leukemic lymphoblasts as a new expression site for subunit A of blood coagulation factor XIII (FXIIIA)1. On the basis of FXIIIA expression, various subgroups of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) can be identified. Methods. Fifty-five children with BCP-ALL treated within the frame of BFM ALL-IC 2002 clinical trial were studied retrospectively. Bone marrow samples were obtained by aspiration and the expression of FXIIIA was detected by flow cytometry. G-banding and fluorescent in situ hybridization was performed according to standard procedures. Results. The 10-year event-free survival (EFS) and overall survival (OS) rate of FXIIIA-positive and FXIIIA-negative patients showed significant differences (EFS: 84% vs. 61%, respectively; p=0.031; OS: 89% vs. 61%; p=0.008). Of all the parameters examined, the only correlation was between the lack of FXIIIA expression and 'B-other' genetic subgroup. Further multivariate Cox regression analysis of FXIII-subtype and genetic group or 'B-other' subgroup identified FXIIIA-negative characteristics as an independent predictor for poor outcome in BCP-ALL. Conclusion. We found an excellent correlation between long-term survival and FXIIIA-positive phenotype of lymphoblasts in de novo childhood BCP-ALL. The results presented seem to be convincing enough to suggest a possible role for FXIIIA expression in the prognostic grouping of childhood BCP-ALL patients. In addition, lack of FXIIIA expression is associated with the 'B-other' characteristics, therefore, FXIIIA can help to identify those cases that may require further detailed genetic examination by using expensive methods. Acknowledgment. The authors thank Dr. Erzsebet Balogh for performing the cytogenetic analyses and Csaba Antal for his administrative help. The authors are grateful to Dr. Kalman Nagy and their coworkers at the Borsod-Abaúj-Zemplén County Hospital and University Hospital for sending bone marrow samples for flow cytometry. This study was supported by grant OTKA K-108885 (CK). Authors declare no conflict of interest. References. 1. Kiss F, Hevessy Z, Veszpremi A, Katona E, Kiss C, Vereb G, Muszbek L, Kappelmayer JN. Leukemic lymphoblasts, a novel expression site of coagulation factor XIII subunit A. Thromb Haemost. 2006; 96: 176-82. Legend to figures. Figure 1. Prognostic value of FXIII-A expression of lymphoblasts in children with B-cell precursor ALLKaplan Meier plots of event-free (A) and overall survival (B) showed significant difference between the FXIIIA-positive and FXIII-A-negative groups (p=0.031 and p=0.008). Figure 2. Relationship between FXIIIA expression profile and genetic classification The distribution of patients in the various genetic groups differed significantly in terms of FXIII-A profile using Chi square test. Recurrent genetic abnormalities: BCR-ABL1, KMT2A (MLL) gene rearrangements, ETV6-RUNX1 (TEL-AML1), E2A/PBX1 and high hyperdiploidy. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document