scholarly journals Using mitochondrial activity to select for potent human hematopoietic stem cells

2021 ◽  
Vol 5 (6) ◽  
pp. 1605-1616
Author(s):  
Jiajing Qiu ◽  
Jana Gjini ◽  
Tasleem Arif ◽  
Kateri Moore ◽  
Miao Lin ◽  
...  

Abstract Hematopoietic cell transplantation is a critical curative approach for many blood disorders. However, obtaining grafts with sufficient numbers of hematopoietic stem cells (HSCs) that maintain long-term engraftment remains challenging; this is due partly to metabolic modulations that restrict the potency of HSCs outside of their native environment. To address this, we focused on mitochondria. We found that human HSCs are heterogeneous in their mitochondrial activity as measured by mitochondrial membrane potential (MMP) even within the highly purified CD34+CD38−CD45RA−CD90+CD49f+ HSC population. We further found that the most potent HSCs exhibit the lowest mitochondrial activity in the population. We showed that the frequency of long-term culture initiating cells in MMP-low is significantly greater than in MMP-high CD34+CD38−CD45RA−CD90+ (CD90+) HSCs. Notably, these 2 populations were distinct in their long-term repopulating capacity when transplanted into immunodeficient mice. The level of chimerism 7 months posttransplantation was >50-fold higher in the blood of MMP-low relative to MMP-high CD90+ HSC recipients. Although more than 90% of both HSC subsets were in G0, MMP-low CD90+ HSCs exhibited delayed cell-cycle priming profile relative to MMP-high HSCs. These functional differences were associated with distinct mitochondrial morphology; MMP-low in contrast to MMP-high HSCs contained fragmented mitochondria. Our findings suggest that the lowest MMP level selects for the most potent, likely dormant, stem cells within the highly purified HSC population. These results identify a new approach for isolating highly potent human HSCs for further clinical applications. They also implicate mitochondria in the intrinsic regulation of human HSC quiescence and potency.

2011 ◽  
Vol 208 (12) ◽  
pp. 2417-2427 ◽  
Author(s):  
Andrejs Ivanovs ◽  
Stanislav Rybtsov ◽  
Lindsey Welch ◽  
Richard A. Anderson ◽  
Marc L. Turner ◽  
...  

Hematopoietic stem cells (HSCs) emerge during embryogenesis and maintain hematopoiesis in the adult organism. Little is known about the embryonic development of human HSCs. We demonstrate that human HSCs emerge first in the aorta-gonad-mesonephros (AGM) region, specifically in the dorsal aorta, and only later appear in the yolk sac, liver, and placenta. AGM region cells transplanted into immunodeficient mice provide long-term high level multilineage hematopoietic repopulation. Human AGM region HSCs, although present in low numbers, exhibit a very high self-renewal potential. A single HSC derived from the AGM region generates at least 300 daughter HSCs in primary recipients, which disseminate throughout the entire recipient bone marrow and are retransplantable. These findings highlight the vast regenerative potential of the earliest human HSCs and set a new standard for in vitro generation of HSCs from pluripotent stem cells for the purpose of regenerative medicine.


2018 ◽  
Vol 2 (24) ◽  
pp. 3602-3607 ◽  
Author(s):  
Russell G. Witt ◽  
Bowen Wang ◽  
Quoc-Hung Nguyen ◽  
Carlo Eikani ◽  
Aras N. Mattis ◽  
...  

Key Points Fetal injection of antibodies against the c-Kit receptor and CD47 effectively depletes host HSCs in immunocompetent mice. In utero depletion of host HSCs increases long-term engraftment after neonatal hematopoietic cell transplantation.


Blood ◽  
2010 ◽  
Vol 115 (18) ◽  
pp. 3704-3707 ◽  
Author(s):  
Faiyaz Notta ◽  
Sergei Doulatov ◽  
John E. Dick

Abstract Repopulation of immunodeficient mice remains the primary method to assay human hematopoietic stem cells (HSCs). Here we report that female NOD/SCID/IL-2Rgc-null mice are far superior in detecting human HSCs (Lin−CD34+CD38−CD90+CD45RA−) compared with male recipients. When multiple HSCs were transplanted, female recipients displayed a trend (1.4-fold) toward higher levels of human chimerism (female vs male: injected femur, 44.4 ± 9.3 vs 32.2 ± 6.2; n = 12 females, n = 24 males; P = .1). Strikingly, this effect was dramatically amplified at limiting cell doses where female recipients had an approximately 11-fold higher chimerism from single HSCs (female vs male: injected femur, 8.1 ± 2.7 vs 0.7 ± 0.7; n = 28 females, n = 20 males; P < .001). Secondary transplantations from primary recipients indicate that females more efficiently support the self-renewal of human HSCs. Therefore, sex-associated factors play a pivotal role in the survival, proliferation, and self-renewal of human HSCs in the xenograft model, and recipient sex must be carefully monitored in the future design of experiments requiring human HSC assays.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 816-816
Author(s):  
Faiyaz Notta ◽  
Sergei Doulatov ◽  
John E. Dick

Abstract Abstract 816 A fundamental tenet that has guided our insight into the biology of hematopoietic stem cells (HSCs) over the past 50 years is the principle that an HSC can only be assayed by functional repopulation of an irradiated host1. In its strictest definition, only a HSC can provide long-term reconstitution of all the major lineages following single cell transplantation. However, the existing strategies for human HSC isolation lack quantitation and do not submit to this rigorous standard, thus precluding further biological analysis. Here, we report the prospective and quantitative analysis of human cord blood (CB) HSCs transplanted into female NOD/SCID/IL-2Rgcnull mice. We identify integrin a6 (CD49f) as a novel marker of cord blood (CB) HSCs and report that single Lin-CD34+CD38-CD90+CD45RA-RholoCD49fhi cells can reconstitute myeloid, B-, and T-cell lineages for 18 weeks. 5 of 29 mice transplanted with single cells gave rise to human cells indicating that approximately 20% of cells in this fraction are HSCs. This advance finally enables utilization of near-homogeneous populations of human HSCs to gain insight into their biology and to harness them for stem cell-based therapeutics. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 133 (19) ◽  
pp. 2069-2078 ◽  
Author(s):  
Wendy W. Pang ◽  
Agnieszka Czechowicz ◽  
Aaron C. Logan ◽  
Rashmi Bhardwaj ◽  
Jessica Poyser ◽  
...  

Abstract The myelodysplastic syndromes (MDS) represent a group of clonal disorders that result in ineffective hematopoiesis and are associated with an increased risk of transformation into acute leukemia. MDS arises from hematopoietic stem cells (HSCs); therefore, successful elimination of MDS HSCs is an important part of any curative therapy. However, current treatment options, including allogeneic hematopoietic cell transplantation (HCT), often fail to ablate disease-initiating MDS HSCs, and thus have low curative potential and high relapse rates. Here, we demonstrate that human HSCs can be targeted and eliminated by monoclonal antibodies (mAbs) that bind cell-surface CD117 (c-Kit). We show that an anti-human CD117 mAb, SR-1, inhibits normal cord blood and bone marrow HSCs in vitro. Furthermore, SR-1 and clinical-grade humanized anti-human CD117 mAb, AMG 191, deplete normal and MDS HSCs in vivo in xenograft mouse models. Anti-CD117 mAbs also facilitate the engraftment of normal donor human HSCs in MDS xenograft mouse models, restoring normal human hematopoiesis and eradicating aggressive pathologic MDS cells. This study is the first to demonstrate that anti-human CD117 mAbs have potential as novel therapeutics to eradicate MDS HSCs and augment the curative effect of allogeneic HCT for this disease. Moreover, we establish the foundation for use of these antibody agents not only in the treatment of MDS but also for the multitude of other HSC-driven blood and immune disorders for which transplant can be disease-altering.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2310-2310
Author(s):  
Daniel Patrick Dever ◽  
Matthew Porteus

Abstract The b -hemoglobinopathies including sickle cell disease (SCD) and b -thalassemia ( b -thal) affect millions of people worldwide . SCD and b -thal are caused by mutations in the b -globin gene (HBB) resulting in either abnormal sickling or severely reduced protein production, respectively. A curative strategy for the b -hemoglobinopathies would be ex vivo HBB gene correction in patient-derived hematopoietic stem and progenitor cells (HSPCs) followed by autologous hematopoietic stem cell transplantation (auto-HSCT). We report the first CRISPR/Cas9 gene-editing platform for achieving homologous recombination (HR) at the HBB gene in long-term repopulating HSCs derived from mobilized peripheral blood. We combine electroporation of Cas9 protein complexed with chemically modified sgRNAs and delivery of a HR donor by recombinant adeno-associated viral vectors, serotype 6 (rAAV6). Notably, by including a reporter gene in the HR donor, we are able to identify and purify a population of HSPCs with >90% of cells having targeted integration at the HBB gene. These cells can be identified because HR-mediated integration causes the reporter gene to be expressed at log-fold higher levels than the non-integrated reporter. When transplanted into immunodeficient mice, the purified population gives rise to engraftment of HBB-edited human cells in primary and secondary recipients, confirming the presence of long-term repopulating hematopoietic stem cells (LT-HSCs). Importantly, we show efficient correction of the SCD-causing E6V mutation in SCD patient-derived CD34+ HSPCs by either editing the nucleotide mutation or knocking in an anti-sickling b -globin cDNA. Edited SCD CD34+ cells were shown to express adult b -globin (HbA) mRNA after HSPCs were differentiated into erythrocytes in vitro, confirming intact transcriptional regulation of the edited HBB allele. Collectively, these preclinical studies outline a CRISPR-based methodology for targeting HSCs for HR at the HBB locus to advance the development of next generation therapies for b -hemoglobinopathies. Disclosures Porteus: CRISPR Therapeutics: Consultancy, Equity Ownership.


Blood ◽  
2011 ◽  
Vol 118 (11) ◽  
pp. 2941-2950 ◽  
Author(s):  
Takashi Yahata ◽  
Tomomi Takanashi ◽  
Yukari Muguruma ◽  
Abd Aziz Ibrahim ◽  
Hideyuki Matsuzawa ◽  
...  

Abstract Stem cells of highly regenerative organs including blood are susceptible to endogenous DNA damage caused by both intrinsic and extrinsic stress. Response mechanisms to such stress equipped in hematopoietic stem cells (HSCs) are crucial in sustaining hematopoietic homeostasis but remain largely unknown. In this study, we demonstrate that serial transplantation of human HSCs into immunodeficient mice triggers replication stress that induces incremental elevation of intracellular reactive oxygen species (ROS) levels and the accumulation of persistent DNA damage within the human HSCs. This accumulation of DNA damage is also detected in HSCs of clinical HSC transplant patients and elderly individuals. A forced increase of intracellular levels of ROS by treatment with a glutathione synthetase inhibitor aggravates the extent of DNA damage, resulting in the functional impairment of HSCs in vivo. The oxidative DNA damage activates the expression of cell-cycle inhibitors in a HSC specific manner, leading to the premature senescence among HSCs, and ultimately to the loss of stem cell function. Importantly, treatment with an antioxidant can antagonize the oxidative DNA damage and eventual HSC dysfunction. The study reveals that ROS play a causative role for DNA damage and the regulation of ROS have a major influence on human HSC aging.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 682-682
Author(s):  
Fumi Shibata ◽  
Yuko Goto-Koshino ◽  
Miyuki Ito ◽  
Yumi Fukuchi ◽  
Yoshihiro Morikawa ◽  
...  

Abstract A variety of cell surface markers such as c-Kit, Sca-1, CD34 and Flt-3 have been utilized to prospectively isolate murine or human hematopoietic stem cells (HSCs). While murine HSCs were shown to be highly enriched in CD34−c-Kit+Sca-1+Lineage- (CD34−KSL) fraction, this population is still not homogeneous for long-term HSCs. In human, CD34+ cells are regarded as crude HSC fraction and used for clinical applications. However, quiescent human HSCs are also found in CD34− fraction, indicating that CD34 is not a bona fide marker for human HSC. Thus, novel surface markers that can be used to purify human or murine HSCs to homogeneity need to be identified. Roundabout (Robo) family proteins are immunoglobulin-type cell surface receptors that are predominantly expressed in nervous system. Slit2, a ligand for Robo, is a large leucine-rich repeat-containing secreted protein that is also expressed in brain. By binding with Robo, Slit2 acts as a repellant for axon guidance of developing neurons and they are critical for correct wiring of neuronal network. Robo family comprises four family members, Robo1 – Robo4, and Robo4 is distinct in that it is expressed specifically in endothelial cells, but not in brain. In this study, we investigated Robo4 for its possible application for HSC identification in murine and human hematopoietic system. By RT-PCR, Robo4 was specifically expressed in murine KSL fraction, and was not expressed in lineage positive cells and various progenitors such as common myeloid progenitor (CMP), granulocyte-monocyte progenitor (GMP), megakaryocyte/erythroid progenitor (MEP) and common lymphoid progenitor (CLP). Moreover, the expression of Robo4 was highest in side population of KSL cells (KSL-SP), and moderate in KSL-main population (KSL-MP) cells. Monoclonal antibody raised against Robo4 identified its high expression in KSL cells by FACS. FACS analysis of human cord blood cells revealed that Robo4 is highly expressed in CD34+ cells, and CD34+Robo4high population fell into CD38− fraction, which enriches human HSCs. Bone marrow transplantation experiments revealed that Robo4+ fraction of murine KSL cells had long-term repopulating activity, while Robo4−KSL cells not. Although both Robo4+ and Robo4− CD34−KSL cells repopulated murine hematopoietic system for long-term, Robo4+CD34−KSL cells achieved higher chimerism after repopulation compared with Robo4−CD34−KSL. To investigate the physiological role of Robo4 in HSC homeostasis, we next examined the expression of Slit2 in hematopoietic system. Interestingly, Slit2 is specifically expressed in bone marrow stromal cells, but not in hematopoietic cells. Moreover, Slit2 is induced in osteoblasts, a critical cellular component composing HSC niche, in response to myelosuppressive stress such as 5FU treatment. These results indicate that Robo4 is expressed in murine and human hematopoietic HSCs and useful for HSC purification, and Robo4 - Slit2 system may play a role in HSC physiology in niche environment under hematopoietic stress.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2156-2156
Author(s):  
Kuiying Ma ◽  
Riguo Fang ◽  
Lingling Yu ◽  
Yongjian Zhang ◽  
Chao Li ◽  
...  

Abstract Gene-modified hematopoietic stem cells (HSCs) therapy has demonstrated remarkable success for the treatment of inherited blood disorders. As the origin of hematologic hierarchy, HSCs play an essential role in sustaining life-long hematopoiesis. HSCs identification via reliable and robust bio-markers could facilitate the development of HSC gene therapy. Previous studies showed that long-term hematopoietic stem cells (LT-HSCs) were enriched in the Lin -CD34 +CD38 -CD45RA -CD90 +CD49f + population which could support long-term hematopoietic reconstitution. However, several of these surface markers proved to be unreliable when ex vivo culturing, such as CD38 and CD49f. Thus, HSCs characterization is still hindered by lacking bona-fide bio-markers, and consequently identification of long-term HSCs still needs time-consuming in vivo transplantation. To this end, we performed in vitro screening and comprehensive functional evaluation to identify a novel surface marker of human HSCs. During initial screening, a cell surface antigen screen panel (including 242 human cell surface markers) and human CD34 and CD90 antibodies were used to perform flow cytometry analysis on CD34 + HSPCs enriched from umbilical cord blood. Compared with CD34 + cell population, we found that CD66 (a,c,d,e), CD200 and CD48 positive cells were more enriched in CD34 +CD90 + subset. Previous studies indicated that HSCs cannot be maintained during in vitro culturing. By tracking these candidate surface markers based on this principle, CD66e was selected as the potential HSCs bio-marker. Next, we examined the in vivo hematologic repopulating potential of HSCs by limiting dilution assay (LDA) on immune-deficient mouse model. We sorted CD66e + and CD66e - subsets from CD34 +CD90 +CD45RA - subpopulation, and transplanted into irradiated NOD-scid Il2rg −/− (NPG) mice respectively. At week16 post-transplantation, in contrast to the CD66e - group, CD66e + cells exhibited significantly higher reconstitution in peripheral blood (PB), bone marrow (BM) and spleen. Engraftment dynamics revealed that the CD66e - group were only capable of reconstitution 4 weeks post transplantation, even at the highest initial cell dose. Moreover, the CD66e - group displayed impaired multi-lineage differentiation pattern, especially in PB and BM samples, while the CD66e + group presented a robust multi-lineage reconstitution. Notably, LDA results showed that the CD66e + cells within CD34 +CD90 +CD45RA - population contained 1 out of 529 SCID repopulating cells (SRC), almost 60-fold greater than the CD66e - fraction. To further investigate the long-term repopulating potential of the CD66e + cells, we performed the secondary transplantation collected from the BM cells of primary recipients. CD66e + cells presented significant higher repopulating activity than CD66e- subset in the secondary recipients. These findings reveal that the major cells with homing and long-term reconstitution capacity among CD34 +CD90 +CD45RA - cells were CD66e positive. In order to determine the transcriptional profile of CD66e + cells, we performed RNA-sequencing analysis using the population of CD34 + cells, CD34 +CD90 +CD45RA - cells, CD66e + and CD66e - cells within CD34 +CD90 +CD45RA - subset. Remarkably, compared with other groups, the CD66e + cells displayed a bias toward the signature of HSC and early progenitors such as LMPP and CLP. Moreover, gene set enrichment analysis showed that hematopoietic lineage and long-term potentiation-related genes were highly enriched in the CD66e + cells. Further qRT-PCR experiment confirmed that several HSC-related genes were significantly higher expressed in CD34 +CD90 +CD45RA -CD66e + cells, compared to CD66e - population or CD34 + HSPCs, suggesting that the gene expression profile of CD66e + cells is reminiscent of HSC signature. Altogether, we demonstrate that CD66e is a robust functional HSC bio-marker that CD66e-positive population among CD34 +CD90 +CD45RA - cells exhibit typical HSC signature, enhanced in vivo engraftment potential and robust multilineage differentiation pattern, which will provide an invaluable tool to investigate the origin of human HSCs, paving the way for the therapeutic application. Figure 1 Figure 1. Disclosures Fang: EdiGene, Inc.: Current Employment.


Sign in / Sign up

Export Citation Format

Share Document