scholarly journals ASXL1 and STAG2 are Common Mutations in GATA2 Deficiency Patients with Bone Marrow Disease and Myelodysplastic Syndrome

Author(s):  
Robert R West ◽  
Katherine R Calvo ◽  
Lisa J Embree ◽  
Weixin Wang ◽  
Laura M Tuschong ◽  
...  

GATA2 Deficiency patients harbor de novo or inherited germline mutations in the GATA2 transcription factor gene, predisposing them to myeloid malignancies. There is considerable variation in disease progression, even among family members with the same mutation in GATA2. We investigated somatic mutations in 106 patients with GATA2 Deficiency to identify acquired mutations that are associated with myeloid malignancies. Myelodysplastic Syndrome (MDS) was the most common diagnosis (~44%), followed by GATA2 bone marrow immunodeficiency disorder (G2BMID) (~37%). Thirteen percent of the cohort had GATA2 mutations but displayed no disease manifestations. There were no correlations between patient age or sex with disease progression or survival. Cytogenetic analyses showed a high incidence of abnormalities (~43%)- notably trisomy 8 (~23%) and monosomy 7 (~12%), but these changes did not correlate with lower survival. Somatic mutations in ASXL1 and STAG2 were detected in ~25% of patients, though these mutations were rarely concomitant. Mutations in DNMT3A were found in ~10% of patients. These somatic mutations were found similarly in G2BMID and MDS, suggesting clonal hematopoiesis in early stages of disease, before the onset of MDS. ASXL1 mutations conferred a lower survival probability and were more prevalent in female patients. STAG2 mutations also conferred a lower survival probability, but did not show a statistically significant sex bias. There was a conspicuous absence of many commonly mutated genes associated with myeloid malignancies, including TET2, IDH1/2, and the splicing factor genes. Notably, somatic mutations in chromatin-related genes and cohesin genes characterized disease progression in GATA2 Deficiency

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 299-299 ◽  
Author(s):  
Victor Bengt Pastor Loyola ◽  
Shinsuke Hirabayashi ◽  
Sandra Pohl ◽  
Emilia J Kozyra ◽  
Albert Catala ◽  
...  

Abstract The emergence of GATA2 deficiency as a germline predisposition to myeloid malignancies raises questions about the nature of acquired secondary genetic and epigenetic events facilitating leukemogenesis. Previously, mutations in ASXL1 were implicated as a possible somatic driver in single cases of GATA2-related MDS. However the landscape of secondary changes had not yet been systematically examined in larger MDS cohorts, and accounting for confounding factors. In this study, we used next-generation genomic platforms to investigate targeted mutational landscape and global epigenetic profiles in patients with GATA2 deficiency. In a large cohort of consecutively diagnosed children with MDS we had initially established that GATA2 deficiency accounts for 7% of primary MDS cases. Exploring the known association between GATA2 mutated (GATA2mut) cases and monosomy 7 (-7), the prevalence of GATA2 deficiency was very high in patients with -7 (37%), reaching its peak in adolescence (>70%). We next tested 60 GATA2-deficient patients with MDS for the presence of secondary mutations using targeted NGS for genes involved in myeloid malignancies. Somatic status was confirmed by matched analysis of fibroblasts, hair follicles or T-cells. Single hematopoietic CFU colonies were sequenced to identify subclonal patterns. For comparison, a GATA2 wildtype (GATA2-WT) cohort of 422 children and adolescents with MDS enrolled in the studies of the European Working Group of Childhood MDS were analyzed by targeted NGS. Somatic mutations were detected in 45% (27/60) of GATA2mut as compared to 19% (82/422) GATA2-WT MDS cases (p<0.0001). Recurrently mutated genes in the GATA2mut group included SETBP1, ASXL1, STAG2, RUNX1, CBL, EZH2, NRAS/KRAS, JAK3, and PTPN11. No mutations were found in TP53, BCOR/BCORL and a number of other oncogenes. Because -7 karyotype was significantly overrepresented in GATA2mut cases with somatic mutations (78%), we next focused on this cytogenetic category. Within the -7 subgroup the rate of somatic mutations was the same in GATA2mut (56%) and GATA2-WT (58%) subgroups. However, hotspot SETBP1 mutations were overrepresented in GATA2-deficient patients with -7 (50%) vs. GATA2-WT MDS cohort (22%, p<0.05). Furthermore, STAG2 mutations were found frequently in the GATA2mut group (10%, 6/60) as opposed to only 0.2% (1/422) of the total GATA2-WT cohort (p<0.0001). Next, we aimed to define the clonal hierarchy of concurrent mutations by longitudinal NGS-analysis during disease course in selected patients. Our results indicate that somatic SETBP1 lesions precede the development of ASXL1 mutations. Remarkably, this model of clonal evolution does not depend on preexisting germline GATA2 lesion, as confirmed by sequencing of single CFU colonies cultivated from the bone marrow of 3 GATA2mut and 3 GATA2-WT MDS patients. Finally, to elucidate the epigenetic effects, we compared methylation patterns using methyl-CpG-immunoprecipitation and Illumina-NGS in 25 GATA2mut to 17 GATA2-WT patients and 10 healthy controls. Based on the degree of global methylation, there were no significant alterations allowing for the discrimination of GATA2-deficient patients from the total MDS cohort, when accounted for bias arising from cytogenetic and morphologic subgroups. In summary, somatic SETBP1 and STAG2 mutations are associated with MDS arising from GATA2 deficiency. The remaining targeted clonal landscape is essentially determined by the presence of monosomy 7. Similarly, the global epigenetic changes correlate with morphological and cytogenetic subgroups, rather than with germline GATA2 status. The prospect of potential drug targetability of mutations frequently found in children, particularly in the SETBP1 oncogene, and in histone modifiers ASXL1 and EZH2, warrants further biological studies. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 1 (7) ◽  
pp. 443-448 ◽  
Author(s):  
Kevin E. Fisher ◽  
Amy P. Hsu ◽  
Christopher L. Williams ◽  
Hadi Sayeed ◽  
Brian Y. Merritt ◽  
...  

Key Points Children with primary MDS should be tested for GATA2 mutations, regardless of karyotype, family history, or features of GATA2 deficiency. Screening children with GATA2-MDS for somatic mutations may reveal mutations predictive of clinical outcomes.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2674-2674
Author(s):  
Daisuke Hasegawa ◽  
Hiroshi Yagasaki ◽  
Yoshitoshi Ohtsuka ◽  
Masami Inoue ◽  
Akira Kikuchi ◽  
...  

Abstract Myelodysplastic syndrome (MDS) is a hematopoietic stem cell disorder and uncommon in childhood. Especially, refractory anemia (RA), which is a subgroup of MDS without an increased number of blasts, is quite rare in this age group. Although hematopoietic stem cell transplantation (HSCT) is thought to be a curative therapy for pediatric MDS, it may cause severe complications and mortality. Several reports have shown encouraging results with immunosuppressive therapy (IST) in adult patients with RA. We report the outcome of 12 children with RA enrolled on a prospective multicenter trial conducted by Japanese childhood MDS study group. In this study, a child who was suspected of having RA required repetitive bone marrow aspiration at 6–8 weeks intervals. If the disease was stable and blood transfusion was not urgent, the patient could be monitored closely without any therapy. If physicians decided to start therapy due to progression of cytopenia, the patient received IST consisting antithymocyte globulin (ATG), cyclosporine (CyA) and methylprednisolone (mPSL). Of the 12 children, 9 received IST (IST group), 2 were followed without treatment (observation group) and one underwent HSCT without IST. Seven children showed hematological response in the IST group, and a response rate was 77.8%. Of note, 1 patient with monosomy 7 showed complete cytogenetic response after IST and remained in remission. One patient became refractory to IST after relapse and underwent bone marrow transplantation (BMT) from a human leukocyte antigen (HLA) 1-antigen mismatch relative, and she is alive without disease on 351 days after HSCT. One patient received BMT from an HLA-matched unrelated donor without IST because he had monosomy 7, but he relapsed and died from disease progression. Neither of 2 patients in the observation group experienced disease progression. There were 8 children who showed chromosomal abnormalities, including monosomy 7 and trisomy 8, 7 of whom received IST and 6 children showed hematological response. No severe adverse events related to IST were reported in this study. Eleven of the 12 patients are alive after a median follow-up of 1,319 days. The probability of survival at 5 years was 88.9%, which was superior to our previous retrospective analysis of children with RA. We conclude that IST for children with RA seems an effective modality and warrants an international clinical trial.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4300-4300
Author(s):  
Hiroshi Handa ◽  
Takafumi Matsushima ◽  
Norifumi Tsukamoto ◽  
Masamitsu Karasawa ◽  
Hiroyuki Irisawa ◽  
...  

Abstract Telomerase activity has been found in most common cancers indicating that telomerase detection may be a useful marker in cancer diagnosis. For detection of telomerase activity and the expression of associated genes in cells, TRAP assay and RT-PCR are customarily used. Immunohistochemical detection of hTERT is useful to detect telomerase-positive cells in a background of non- cancerous cells. We developed a method for the detection of intra-nuclear hTERT protein, in a sub-population of hematopoietic cells, using concurrent staining cell surface antigen and multi color flow cytometry. Human leukemia and myeloma cell lines showed 100% positivity, whereas neutrophils of normal subjects showed 0% positivity, it is consistent with telomerase activity assessed by TRAP assay (r=0.71, p&lt;0.0001) and previous observations. Then we applied this method to analyze hTERT expression in myelodysplastic syndrome (MDS). Forty MDS patients samples were obtained, 36 patients were diagnosed as low risk MDS (RA), 14 patients were diagnosed as high risk MDS (RAEB or RAEB-t) according to FAB classification. All samples were acquired after informed consent was obtained from the patients. Expression of hTERT protein was higher in CD34-positive blast-gated cells than CD34-negative blast-gated cells. The percentage of the CD34+ cells expressing hTERT ranged from 9.66% to 90.91% in low risk MDS patients, whereas from 50.46% to 97.68% in high risk MDS. The expression level was higher in the high risk group compared to that in the low risk group in MDS (p=0.0054, p=0.0084). This observation implied that telomerase up-regulation and hTERT expression were important for disease progression and could be a marker of more advanced disease. In subsets of MDS and AML bone marrow specimens obtained from these patients, we examined the hTERT expression in CD34+/CD38 high cells and CD34+/CD38 low cells containing stem cell fraction. Of interest, some of the patients showed higher expression of hTERT in CD34+/CD38 low cells than in CD34+/CD38 high cells. This observation is inconsistent with previous reports describing normal bone marrow hematopoietic cell findings. We speculated that this phenomenon could be a marker of MDS abnormality and that telomerase up-regulation may be initiated in the more primitive precursor fraction containing hematopoietic stem cells during the disease progression. Telomerase studies may be useful for definition of the risks associated with disease severity. Multi-parameter nature of flow cytometry and its ability to identify cellular sub-populations will facilitate a fuller understanding of the mechanisms of activation of telomerase.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4625-4625 ◽  
Author(s):  
Jay Lipshitz ◽  
Sewanti Limaye ◽  
Dilip Patel

Abstract Leukocyte Alkaline Phosphatase (LAP) Score is valuable in the work-up of certain hematological diseases. Most notably, the score is decreased in Chronic Myelogenous Leukemia and Paraoxysmal Nocturnal Hemaglobinurea but increased in leukemoid reaction to infection and Polycythemia Vera. Last year we reported the LAP scores of 14 patients with Myelodysplastic Syndrome (MDS). Our results showed that patients with less than 5% bone marrow blasts had significantly higher LAP scores than patients with 5–19% bone marrow blasts. We raised the possibility that LAP scores decrease as MDS progresses (Blood, Nov 2006; 108: 4865). In the present study we attempt to further evaluate the utility of LAP in MDS. In addition to our original cohort, bone marrow aspirate results and LAP scores were reviewed from 14 more patients with MDS, for a total of 28 patients. We again assessed the relationship of LAP to bone marrow blast percentage. Furthermore, we recorded a second LAP score, taken at a later date, from 16 of the 28 patients. For those patients with two LAP scores we compared the trend of LAP score to the interval activity of MDS, using transfusion requirement, complete blood cell count (CBC) and clinical assessment as markers of disease activity. In our analysis of LAP score relative to bone marrow blast percentage we again found a significant difference between patients with less than 5% blasts (n=8) and those with 5% to19% blasts (n=20). Patients with less than 5% blasts had significantly higher LAP scores (90.25 ± 18.27) than those with 5 to19% blasts (44.35 ± 52.09) (p<0.0048) (see charts 1 and 2). In our analysis of LAP score in relation to disease progression we found that among patients for whom LAP score decreased, 42.9% (3/7) had disease progression. In patients whose LAP score increased, 11.1% (1/9) had disease progression (p<0.2615) (chart 3). Overall, our results confirm that LAP scores do tend to be lower in patients with more severe disease, as assessed by bone marrow blast percentage. However, although a trend was observed toward change in LAP score correlating with disease activity this was not statistically significant, and larger prospective studies are necessary to assess whether LAP is an accurate marker of MDS progression. Chart 1: LAP scores of patients 1 through 8 with bone marrow blasts less than 5% (mean 90.25, median 96) Chart 2: LAP scores for patients 1 through 20 with bone marrow blasts of 5% to 19% (mean 44.35, median 30) Chart 1: LAP scores of patients 1 through 8 with bone marrow blasts less than 5% (mean 90.25, median 96) . / Chart 2: LAP scores for patients 1 through 20 with bone marrow blasts of 5% to 19% (mean 44.35, median 30) Chart 3: Percent of patients with disease progression among those with decrease in LAP score (white) and those with increase in LAP score (gray) (p<0.2615). Chart 3: Percent of patients with disease progression among those with decrease in LAP score (white) and those with increase in LAP score (gray) (p<0.2615).


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3431-3431
Author(s):  
Neelam Giri ◽  
Blanche P Alter ◽  
Helkha Peredo-Pinto ◽  
M. Tarek Elghetany ◽  
Irina Maric ◽  
...  

Abstract Abstract 3431 Recurring clonal cytogenetic abnormalities have been described in patients with Fanconi anemia (FA) and Shwachman-Diamond syndrome (SDS). In FA, gains of 3q and monosomy 7 (−7) imply progression to myelodysplastic syndrome (MDS) and acute myelogenous leukemia (AML). In SDS, isochromosome 7q and deletion (del) 20q are usually benign. Dyskeratosis congenita (DC) and Diamond-Blackfan anemia (DBA) do not have unique clones. We report here the types and frequencies of cytogenetic clones and their association with morphologic MDS or AML in the major inherited bone marrow failure syndromes (IBMFS), in a prospective/ retrospective study of patients with FA, SDS, DC and DBA enrolled in the NCI IBMFS cohort from 2002–2010. Bone marrow (BM) morphology and cytogenetics (G-banding; selected FISH, CGH, SKY) performed at our institute and all outside cytogenetics reports were centrally reviewed. Cytogenetic abnormalities were defined and karyotypes designated according to ISCN (2009). Two independent blinded hematopathologists reviewed BM morphology. Diagnosis of morphologic MDS was based on a modification of WHO 2008 and required ≥10% dysplasia in 2 cell lineages. Data analysis was both cross-sectional and longitudinal. P values are global comparing all 4 disorders using Fisher's exact test.ParameterAll IBMFSFASDSDCDBAP valueTotal number (N)12835113646–N with clone ever2817 (49%)4 (36%)4 (11%)3 (7%)<0.01N with MDS ever105 (14%)3 (27%)1 (3%)1 (2%)0.01N with clone + MDS75 (14%)2 (18%)00<0.01N with clone alone2112 (34%)2 (18%)4 (11%)3 (7%)<0.01N with MDS alone301 (9%)1 (3%)1 (2%)0.3N with clone at 1st BM179 (26%)4 (36%)3 (8%)1 (2%)<0.01N with clones at follow-up118012<0.01N with follow-up BMs591791716–Median follow-up in years3 (0–19)6 (1–16)2 (1–6)3 (0–19)2 (0–10)– More FA and SDS patients had clones and/or MDS compared with DC or DBA (Table). MDS was always associated with clones in FA but not in the other IBMFS. In FA, bone marrow transplant (BMT) or death occurred with similar frequencies in those with or without clones. Among 17 patients with clones, follow-up cytogenetics were unavailable in 5; of these, 2 with clone alone [one with del 7q and 18p and one with t(3;6)(q?25;p?21)] progressed to AML, while one with clone and MDS died from other causes. Recurring abnormalities in 12 FA patients with clones followed for up to 16 years, included gains of 1q in 4, −7 or del 7q in 3, and deletions of 6p, 13q, 18p and 20q in 2 patients each; only one had gain of 3q. These patients showed fluctuation or disappearance of clones, new appearance of clones, stable clone, or clonal evolution. Progression to MDS occurred with gain of 1q and 6p deletion, gain of 3q, or −7 in 3 patients, respectively; one patient with MDS had clonal persistence. No disease progression was seen in 5 FA patients with clone alone. All 5 SDS patients with clones and/or MDS are alive with no disease progression. The 4 with a clone had stable persistent del 20q as a sole abnormality; 2 had MDS and 2 did not. One had MDS with a normal karyotype. Four DC patients had abnormal clones including 2 with gain of 1q only. One patient with 1q gain died from pulmonary fibrosis. Three others are alive; 2 with stable clones at 7 and 19 years' follow-up, respectively. One additional DC patient has morphologic MDS but no clone. All 3 DBA patients with clones had del 16q, 2 alone and 1 with del 9p; none had MDS. The clones were transient in 2, disappearing within 1–2 years; the third was recently identified. None of these had disease progression. One patient with morphologic MDS alone died from complications of iron overload. This study shows that clonal chromosome abnormalities occur more frequently in FA and SDS than in DC and DBA. Gain of 3q in FA was not as common here as reported by others. This is the first comprehensive study of clones and MDS in DC and DBA. Strengths of this study include the large number of patients, and central review of cytogenetics and morphology. It is unbiased compared with FA literature reports that include many patients referred for BMT. Limitations include a relatively small number of patients with each diagnosis and short follow-up in most. The study demonstrates that clones may fluctuate or disappear, and may not per se portend a bad prognosis. Progression to clinically significant MDS or AML may be related to the severity of cytopenias and not to clone alone, and warrants more extensive long-term studies. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Yasuhiro Tanaka ◽  
Atsushi Tanaka ◽  
Akiko Hashimoto ◽  
Kumiko Hayashi ◽  
Isaku Shinzato

Myelodysplastic syndrome (MDS) terminally transforms to acute myeloid leukemia (AML) or bone marrow failure syndrome, but acute myeloid leukemia with basophilic differentiation has been rarely reported. An 81-year-old man was referred to our department for further examination of intermittent fever and normocytic anemia during immunosuppressive treatment. Chromosomal analysis showed additional abnormalities involving chromosome 7. He was diagnosed as having MDS. At the time of diagnosis, basophils had not proliferated in the bone marrow. However, his anemia and thrombocytopenia rapidly worsened with the appearance of peripheral basophilia three months later. He was diagnosed as having AML with basophilic differentiation transformed from MDS. At that time, monosomy 7 was detected by chromosomal analysis. We found that basophils can be confirmed on the basis of the positivity for CD203c and CD294 by flow cytometric analysis. We also found by cytogenetic analysis that basophils were derived from myeloblasts. He refused any chemotherapy and became transfusion-dependent. He died nine months after the transformation. We should keep in mind that MDS could transform to AML with basophilic differentiation when peripheral basophilia in addition to myeloblasts develops in patients with MDS.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 643-643
Author(s):  
Sushree Sangita Sahoo ◽  
Victor Pastor Loyola ◽  
Pritam Kumar Panda ◽  
Enikoe Amina Szvetnik ◽  
Emilia J. Kozyra ◽  
...  

Abstract Hereditary predisposition has been ever since implicated in the etiology of childhood myelodysplastic syndromes (MDS). Until recently, GATA2 deficiency prevailed as a major germline cause in pediatric primary MDS. In the past 2 years, we and others identified germline mutations in paralogue genes SAMD9 and SAMD9L residing on chromosome 7q21.2 as new systemic diseases with high propensity for MDS with monosomy 7. Although initially, mutations in SAMD9 and SAMD9L genes were associated with MIRAGE and Ataxia-Pancytopenia syndromes, respectively, with recent reports the phenotypes are becoming more intertwined. Nevertheless, the predisposition to MDS with monosomy 7 (-7) remains a common clinical denominator. Both genes are categorized as negative regulators of cellular proliferation and mutations were shown to be activating. Because of their high evolutionary divergence, classical in silico prediction is erratic, thereby establishing in vitro testing as the current gold standard for pathogenicity evaluation. The objectives of this study were to define the prevalence of SAMD9/9L germline mutations in primary pediatric MDS, and to describe the clinical phenotype and outcome. In addition, we aimed to characterize the somatic mutational architecture and develop a functional scoring system. Within the cohort of 548 children and adolescents with primary MDS diagnosed between 1998 and 2016 in Germany, 43 patients (8%) carried SAMD9/9L mutations that were mutually exclusive with GATA2 deficiency and known constitutional bone marrow (BM) failure. MDS type refractory cytopenia of childhood was diagnosed in 91% (39/43), and MDS with excess blasts in 9% (4/43) of mutated cases. Karyotype at diagnosis was normal in 58%, and -7 was detected in 37% of SAMD9/9L cohort. Within MDS subgroup with -7 (n=74), SAMD9/9L mutations accounted for 22% of patients. Notably, the demographics, familial disease, diagnostic blood and BM findings, overall survival (OS) and the outcome after HSCT were not influenced by mutational status in our study cohort (n=548). At the last follow up, 88% (38/43) of SAMD9/9L MDS patients were alive; 35/43 had been transplanted with a 5-year-OS of 85%. Next, we added 26 additional cases with SAMD9/9L mutations diagnosed in Europe within EWOG-MDS studies. In the total cohort of 69 germline mutated patients we found a total of 75 SAMD9/9L mutations, of which 67 were novel. Of those we tested 47 using a HEK293 cell in vitro system and 45/47 mutants inhibited proliferation. While 53/69 patients carried only single germline mutations (missense in 50/53 and truncating in 3/53), in the remaining 16 patients, 11 additional truncating and 7 missense mutations were found. We did not observe an association between germline mutation and phenotype. Immunological issues (e.g. recurring infections, low Ig) were described in 32%/50% of SAMD9/9L-mutated patients, while physical anomalies were very heterogeneous and reported in ~50% of patients in both mutational groups. Intriguingly, genital phenotypes occurred in 40% of SAMD9L, while neurological problems were present in 30% of SAMD9 - mutational subgroups. To elucidate the somatic mutational landscape, we performed whole exome and deep sequencing of 58 SAMD9/9L patients and identified recurrent somatic mutations in known oncogenes that were earlier associated with pediatric MDS: SETBP1 (10%), RUNX1 (7%), ASXL1 (5%), EZH2 (5%), CBL (3%). The identified somatic mutations occurred in association with monosomy 7 background (18/20). Finally, we utilized the results from functional testing of the 47 SAMD9/9L variants as our test cohort to develop combinatorial in silico scoring. The rationale was to decrease the dependency on functional validation. Based on the results of 20 in silico tools we could concatenate a matrix of 5 algorithms to resolve the pathogenicity of >80% of variants. Using this model, all variants predicted as pathogenic showed also growth-restrictive effect in vitro. In summary, pathogenic SAMD9/9L germline mutations account for 8% of primary pediatric MDS and 22% of MDS/-7. The mutations identified are heterogeneous and their effect can be predicted using a combinatorial in silico - in vitro approach. Finally, the clinical outcome and somatic mutational landscape are not influenced by the mutational status. Disclosures Locatelli: Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Bellicum: Consultancy, Membership on an entity's Board of Directors or advisory committees; bluebird bio: Consultancy; Miltenyi: Honoraria; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees. Niemeyer:Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5429-5429
Author(s):  
Kritanan Songserm ◽  
Amornchai Suksusut ◽  
Sunisa Kongkiatkamon ◽  
Kitsada Wudhikarn ◽  
Chinnachote Teerapakpinyo ◽  
...  

Genetic mutation in cytopenic patients: Distinctive genomic profile between preclinical vs. clinical myelodysplastic syndrome. Introduction Myelodysplastic syndromes (MDS) are heterogeneous groups of clonal hematopoietic disorders. The current diagnosis of MDS is based on morphologic assessments of dysplasia which are subjected to inter-observer variability and cytogenetic abnormalities which are frequently absent. Somatic mutations in myeloid-related genes have been identified in MDS. However, they are also found in idiopathic cytopenia of unknown significance (ICUS) that shows no significant dysplasia. Therefore, we aimed to explore the clinical implications of genetic mutations in ICUS and compared with MDS. The secondary objective was to find association between degree of dysplasia and somatic mutations. Materials and Methods The patients with peripheral cytopenia ≥1 lineage (ANC < 1,800/mm3, hemoglobin < 10 gm/dL, platelet < 100x109/mL) without explainable causes were enrolled. Bone marrow aspirates were evaluated independently by 2 hematologists. Of note, dysplasia are defined by WHO 2008 classification (eg. Erythroid lineage: ring sideroblasts, megaloblastoid change; granulocytic lineage: hypogranularity, pseudopelger-huet anomaly; megakaryocytic lineage: hypolobate, micro-megakaryocyte). The significant dysplasia cut off was 10% in single lineage or more. If there was a discrepancy, the third hematologist would help to reach the final consensus. We extracted DNA from bone marrow and performed next generation sequencing (NGS) that targeted 143 myeloid-related genes. Results Forty-eight patients were enrolled in this study. The median age at diagnosis was 70 years (71-96). Results of bone marrow examinations were categorized by morphology into 3 groups; non-significant dysplasia (dysplasia < 10%) 27%, low risk MDS (IPSS-R ≤3.5) 42% and high-risk MDS/sAML (IPSS-R >3.5/Blast≥20% in BM or peripheral blood) 31%. Most of cases (77%) carried normal cytogenetics while other genetic alterations were complex chromosome (6%), -Y (6%), del(5q) (4%), trisomy 8 (2%), del(20q) (2%), i(17q) (2%). Thirty from 48 cases (62%) harbored more than 1 somatic mutation. Twenty-eight gene mutations were identified. Mutations were detected 1.6 mutation per 1 patient in average. Most frequent somatic mutations were ASXL1:10/80 (12%), TET2:9/80 (11%), MFDS11: 6/80 (7%), TP53:6/80 (7%), and RUNX1:5/80 (6.25%). The proportions of cases with somatic mutations were not different across the groups (no dysplasia 50%, non-significant dysplasia 80% and significant dysplasia 62%). According to mutation types in each group, mutations in epigenetic pathways were the most frequent mutations across all patient subgroups (ICUS 64.7%, low-risk MDS 51.8 %, and high-risk MDS 52.5%). Mutations in transcription factor were predominated in MDS (18.5% and 25.0% in low-risk and high-risk MDS, respectively) compared to ICUS (11.7%). Individual average frequency of gene mutations was significantly different between disease subtype (high risk MDS 2.7 gene/person, low risk MDS 1.1 gene/person, ICUS 1.3 gene/person (P=.038). Higher variant allele frequency (VAF) of mutated genes was significantly observed in high risk MDS (38.3%) compared to low risk MDS (30.8%) and preclinical MDS (29.0%) (P=.03). Conclusion In conclusion, molecular profiling was significantly different between preclinical MDS and MDS groups in terms of types of somatic mutations and VAF. This unique contrast could be used to distinguish between preclinical MDS and clinically significant MDS. In contrast, degree of marrow dysplasia was not associated with number of gene mutations in this study. Prediction for clinical consequent of somatic mutations in CCUS requires long term follow up. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document