Phenotype and severity of asthma determines bronchial epithelial immune responses to a viral mimic

2021 ◽  
pp. 2102333
Author(s):  
Celeste Porsbjerg ◽  
Juan Jose Nieto-Fontarigo ◽  
Samuel Cerps ◽  
Sangheeta Ramu ◽  
Mandy Menzel ◽  
...  

BackgroundAsthma is characterised by an aggravated immune response to respiratory viral infections: This phenomenon is a clinically well-recognised driver of acute exacerbations, but how different phenotypes of asthma respond immunologically to virus is unclear.ObjectivesTo describe the association between different phenotypes and severity of asthma and bronchial epithelial immune responses to viral stimulation.MethodsIn the Immunoreact study, healthy subjects (n=10) and 50 patients with asthma were included; 30 (60%) were atopic, and 34 (68%) were eosinophilic; 14 (28%) had severe asthma. All participants underwent bronchoscopy with collection of bronchial brushings. Bronchial epithelial cells (BECs) were expanded and stimulated with the viral replication mimic poly (I:C) (TLR3 agonist) in vitro. The expression of TLR3-induced pro-inflammatory and anti-viral responses of BECs were analysed using RT-qPCR and multiplex ELISA and compared across asthma phenotypes and severity of disease.ResultsPatients with atopic asthma had increased induction of IL-4, IFN-β, IL-6, TNF-α, and IL-1β after poly (I:C) stimulation compared to non-atopic patients, whereas in patients with eosinophilic asthma only IL-6 and IL-8 induction was higher than in non-eosinophilic asthma. Patients with severe asthma displayed a decreased antiviral IFN-β, and increased expression of IL-8, most pronounced in atopic and eosinophilic asthmatics. Furthermore, induction of IL-33 in response to poly (I:C) was increased in severe atopic and in severe eosinophilic asthma, but TSLP only in severe eosinophilic asthma.ConclusionsThe bronchial epithelial immune response to a viral mimic stimulation differs between asthma phenotypes and severities, which may be important to consider when targeting novel asthma treatments.

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7461
Author(s):  
Claire K. Holley ◽  
Edward Cedrone ◽  
Duncan Donohue ◽  
Barry W. Neun ◽  
Daniela Verthelyi ◽  
...  

Understanding, predicting, and minimizing the immunogenicity of peptide-based therapeutics are of paramount importance for ensuring the safety and efficacy of these products. The so-called anti-drug antibodies (ADA) may have various clinical consequences, including but not limited to the alteration in the product’s distribution, biological activity, and clearance profiles. The immunogenicity of biotherapeutics can be influenced by immunostimulation triggered by the presence of innate immune response modulating impurities (IIRMIs) inadvertently introduced during the manufacturing process. Herein, we evaluate the applicability of several in vitro assays (i.e., complement activation, leukocyte proliferation, and cytokine secretion) for the screening of innate immune responses induced by ten common IIRMIs (Bacillus subtilis flagellin, FSL-1, zymosan, ODN2006, poly(I:C) HMW, poly(I:C) LMW, CLO75, MDP, ODN2216, and Escherichia coli O111:B4 LPS), and a model biotherapeutic Forteo™ (teriparatide). Our study identifies cytokine secretion from healthy human donor peripheral blood mononuclear cells (PBMC) as a sensitive method for the in vitro monitoring of innate immune responses to individual IIRMIs and teriparatide (TP). We identify signature cytokines, evaluate both broad and narrow multiplex cytokine panels, and discuss how the assay logistics influence the performance of this in vitro assay.


2018 ◽  
Vol 12 ◽  
pp. 175346661880849 ◽  
Author(s):  
Rosalia Emma ◽  
Jaymin B. Morjaria ◽  
Virginia Fuochi ◽  
Riccardo Polosa ◽  
Massimo Caruso

Asthma is a chronic inflammatory condition involving the airways with varying pathophysiological mechanisms, clinical symptoms and outcomes, generally controlled by conventional therapies including inhaled corticosteroids and long-acting β2 agonists. However, these therapies are unable to successfully control symptoms in about 5–10% of severe asthma patients. Atopic asthma, characterized by high immunoglobulin (Ig)E or eosinophilia, represents about 50% of asthmatic patients. Interleukin (IL)-5 is the main cytokine responsible of activation of eosinophils, hence therapeutic strategies have been investigated and developed for clinical use. Biologics targeting IL-5 and its receptor (first mepolizumab and subsequently, reslizumab and benralizumab), have been recently approved and used as add-on therapy for severe eosinophilic asthma resulting in a reduction in the circulating eosinophil count, improvement in lung function and exacerbation reduction in asthma patients. Despite these biologics having been approved for stratified severe asthma patients that remain uncontrolled with high doses of conventional therapy, a number of patients may be eligible for more than one biologic. Presently, the lack of head-to-head studies comparing the biological agents among themselves and with conventional therapy make the choice of optimal therapy for each patient a challenge for clinicians. Moreover, discontinuation of these treatments, implications for efficacy or adverse events, in particular in long-term treatment, and needs for useful biomarkers are still matters of debate. In this review we evaluate to date, the evidence on mepolizumab that seems to demonstrate it is a well-tolerated and efficacious regimen for use in severe eosinophilic asthma, though more studies are still required.


2011 ◽  
Vol 19 (1) ◽  
pp. 84-95 ◽  
Author(s):  
Jin Huk Choi ◽  
Joe Dekker ◽  
Stephen C. Schafer ◽  
Jobby John ◽  
Craig E. Whitfill ◽  
...  

ABSTRACTThe immune response to recombinant adenoviruses is the most significant impediment to their clinical use for immunization. We test the hypothesis that specific virus-antibody combinations dictate the type of immune response generated against the adenovirus and its transgene cassette under certain physiological conditions while minimizing vector-induced toxicity.In vitroandin vivoassays were used to characterize the transduction efficiency, the T and B cell responses to the encoded transgene, and the toxicity of 1 × 1011adenovirus particles mixed with different concentrations of neutralizing antibodies. Complexes formed at concentrations of 500 to 0.05 times the 50% neutralizing dose (ND50) elicited strong virus- and transgene-specific T cell responses. The 0.05-ND50formulation elicited measurable anti-transgene antibodies that were similar to those of virus alone (P= 0.07). This preparation also elicited very strong transgene-specific memory T cell responses (28.6 ± 5.2% proliferation versus 7.7 ± 1.4% for virus alone). Preexisting immunity significantly reduced all responses elicited by these formulations. Although lower concentrations (0.005 and 0.0005 ND50) of antibody did not improve cellular and humoral responses in naïve animals, they did promote strong cellular (0.005 ND50) and humoral (0.0005 ND50) responses in mice with preexisting immunity. Some virus-antibody complexes may improve the potency of adenovirus-based vaccines in naïve individuals, while others can sway the immune response in those with preexisting immunity. Additional studies with these and other virus-antibody ratios may be useful to predict and model the type of immune responses generated against a transgene in those with different levels of exposure to adenovirus.


2017 ◽  
Vol 3 (2) ◽  
pp. 28
Author(s):  
Desie Dwi Wisudanti

Kefir is a functional foodstuff of probiotics, made from fermented milk with kefir grains containing various types of beneficial bacteria and yeast. There have been many studies on the effects of oral kefir on the immune system, but few studies have shown the effect of bioactive components from kefir (peptides and exopolysaccharides/ kefiran), on immune responses. The purpose of this study was to prove the effect of kefir supernatant from milk goat on healthy immune volunteer response in vitro. The study was conducted on 15 healthy volunteers, then isolated PBMC from whole blood, then divided into 5 groups (K-, P1, P2, P3 and P4) before culture was done for 4 days. The harvested cells from culture were examined for the percentage of CD4+ T cells, CD8+ T cells, IFN-γ, IL-4 using flowsitometry and IL-2 levels, IL-10 using the ELISA method. The results obtained that kefir do not affect the percentage of CD4+ T cells and CD8+ T cells. The higher the concentration of kefir given, the higher levels of secreted IFN- γ and IL-4, but a decrease in IL-2 levels. Significant enhancement occurred at levels of IL-10 culture PBMC given kefir with various concentrations (p <0.01), especially at concentrations of 1%. These results also show the important effects of kefir bioactive components on immune responses. The conclusion of this study is that kefir can improve the immune response, through stimulation of IL-10 secretion in vitro.


2018 ◽  
pp. 44-52 ◽  
Author(s):  
N. M. Nenasheva

Eosinophilic asthma is a common phenotype of severe asthma, occurring in at least half of patients. In recent years, there have been significant changes in the approaches to the treatment of severe bronchial asthma and, above all, eosinophilic asthma. The article discusses the role of eosinophils in the pathogenesis of severe asthma, the detection of the phenotype of severe eosinophilic asthma, and modern approaches to targeting severe asthma with an eosinophilic phenotype using biological agents. A special emphasis is placed on preparations of monoclonal antibodies to interleukin-5, in particular, mepolizumab, recently approved for clinical use in our country.


2019 ◽  
Vol 6 (4) ◽  
pp. 117-135
Author(s):  
Orit Gourgy Hacohen ◽  
Shai Cohen

Asthma is a heterogeneous condition in which multiple pathological pathways manifest with similar symptoms. Severe asthma (SA) is challenging to manage and comprises a significant health and economic burden. Many studies have been conducted in an attempt to define different clinical phenotypes that translate into biological endotypes, with the goal of tailoring treatment based on precision medicine. This review summarizes the current evidence for the treatments of SA, and in particular, the biologic treatments that are currently available: omalizumab, mepolizumab, reslizumab, benralizumab and dupilumab. We found only limited high-quality direct evidence regarding treatment with anti-IgE (omalizumab) in SA patients. Data regarding anti-interleukin (IL)-5 (mepolizumab, reslizumab and benralizumab) showed beneficial effects in severe eosinophilic asthma (SEA) with different levels of blood eosinophils used in clinical trials. Dupilumab, anti-IL-4/IL-13, was shown to be effective in SEA and is the only agent currently FDA-approved for the indication of oral corticosteroid dependent asthma, regardless of the blood eosinophil level. This review also summarizes the existing knowledge regarding the characteristics of the patient who may respond to the different therapies. As of today, more studies are needed to better understand the diverse mechanisms that underlie SA phenotypes. We have not yet adequately reached the goal of precision medicine. Additional studies are necessary in order to find novel surrogate markers that can predict the response to a specific biologic therapy, especially in patients who are oral corticosteroid dependent. In addition, efforts must be invested into research looking for new treatment options for patients with non-type-2 inflammation SA. Statement of novelty: we review the current evidence regarding tailored treatment therapies in SA, with a particular focus on the knowledge regarding patient selection for specific biologic treatments.


1974 ◽  
Vol 140 (3) ◽  
pp. 648-659 ◽  
Author(s):  
Judith A. Kapp ◽  
Carl W. Pierce ◽  
Stuart Schlossman ◽  
Baruj Benacerraf

In recent studies we have found that GAT not only fails to elicit a GAT-specific response in nonresponder mice but also specifically decreases the ability of nonresponder mice to develop a GAT-specific PFC response to a subsequent challenge with GAT bound to the immunogenic carrier, MBSA. Studies presented in this paper demonstrate that B cells from nonresponder, DBA/1 mice rendered unresponsive by GAT in vivo can respond in vitro to GAT-MBSA if exogenous, carrier-primed T cells are added to the cultures. The unresponsiveness was shown to be the result of impaired carrier-specific helper T-cell function in the spleen cells of GAT-primed mice. Spleen cells from GAT-primed mice specifically suppressed the GAT-specific PFC response of spleen cells from normal DBA/1 mice incubated with GAT-MBSA. This suppression was prevented by pretreatment of GAT-primed spleen cells with anti-θ serum plus C or X irradiation. Identification of the suppressor cells as T cells was confirmed by the demonstration that suppressor cells were confined to the fraction of the column-purified lymphocytes which contained θ-positive cells and a few non-Ig-bearing cells. The significance of these data to our understanding of Ir-gene regulation of the immune response is discussed.


2020 ◽  
Vol 41 (3) ◽  
pp. 151-157
Author(s):  
İnsu Yılmaz

Background: Oral corticosteroid (OCS) dependent asthma is one of the severe asthma phenotypes that requires personalized treatment. Objective: To review the role of biologic treatments in OCS-dependent asthma. Methods: A nonsystematic review was performed of emerging multiple novel biologics for potential treatment of OCS-dependent asthma. Results: The serious adverse effects of OCS can be seen as a result of their regular long-term administration. Anti‐interleukin (IL) 5 (mepolizumab), anti‐IL-5R (benralizumab), and anti‐IL-4Rα (dupilumab) are the therapies of choice for OCS-dependent severe asthma. Results of studies showed the efficacy of mepolizumab, benralizumab, and dupilumab, especially in patients with the OCS-dependent severe eosinophilic asthma phenotype and with nasal polyps. Dupilumab may be the therapy of choice of monoclonal antibodies in cases of moderate-severe atopic dermatitis accompanied by OCS-dependent severe asthma. For reslizumab and omalizumab, placebo controlled double-blind studies conducted with OCS-dependent patient populations are needed. Conclusion: Biologics are effective in the “OCS-dependent asthma” phenotype as add-on therapy. It seems that chronic OCS use in OCS-dependent asthma will be replaced by biologic agents that specifically target type 2 inflammation, along with a much better safety profile. However, real-life studies that compare these biologics in OCS-dependent severe asthma are urgently needed.


Sign in / Sign up

Export Citation Format

Share Document