Perception of intensity and unpleasantness for 10-breath inspiratory resistive loads: effect of sex, smoking and insula/amygdala lesion

Author(s):  
Paul Davenport ◽  
Matthew Davenport ◽  
Justin Feinstein ◽  
Sahib Khalsa ◽  
Andreas Von Leupoldt
Author(s):  
Yu.Yu. Byalovskiy ◽  
I.S. Rakitina

Cortical mechanisms play an important role in breathing control under increased breathing resistance (resistive loads). Cortical mechanisms determine the level of voluntary motivation, which significantly affects the tolerance of resistive breathing loads. The purpose of the paper is to determine the effect of voluntary motivation on the tolerance of additional breathing resistance. Materials and Methods. The authors formed procedural motivation by means of moral encouragement or financial rewards of the subjects. Simulation of increased breathing resistance was performed using in-creasing values of thresholdless inspiratory aerodynamic loads: 40, 60, 70, and 80 % from the maximum intraoral pressure. Results. The maximum level of tolerance of additional breathing resistance was observed in volunteers with a material and subsidiary procedural motivation of activity. Under respiratory loads, these subjects demonstrated the greatest deviations of the functional state indicators. Undefined motivation based on the mobilization of goal-oriented resources with moral stimulation showed less efficiency. Lack of specially formed procedural motivation led to minimal tolerance of resistive loads. Conclusion. Procedural motivation, aimed at overcoming additional breathing resistance, significantly increases the tolerance of individual protective means of respiratory organs, which maintains health of workers in a polluted technological environment. Keywords: motivation, tolerance, increased breathing resistance. Большую роль в регуляции дыхания при увеличенном сопротивлении дыханию (резистивных нагрузках) играют кортикальные механизмы. Корковые механизмы определяют уровень произвольной мотивации, которая существенно влияет на переносимость резистивных дыхательных нагрузок. Цель исследования – определение влияния произвольной мотивации на переносимость дополнительного респираторного сопротивления. Материалы и методы. Процессуальную мотивацию формировали методом морального или материального поощрения испытуемых. Моделирование увеличенного сопротивления дыханию проводили с помощью предъявления возрастающих значений беспороговых инспираторных аэродинамических нагрузок: 40, 60, 70 и 80 % от максимального внутриротового давления. Результаты. Максимальный уровень переносимости дополнительного респираторного сопротивления наблюдался у добровольцев, у которых была сформирована материально-субсидивная процессуальная мотивация деятельности; у этой категории испытуемых во время действия дыхательных нагрузок отмечались наибольшие отклонения показателей функционального состояния. Произвольная мотивация на основе мобилизации волевых ресурсов при моральном стимулировании характеризовалась меньшей эффективностью, а отсутствие специально сформированной процессуальной мотивации сопровождалось минимальной переносимостью резистивных нагрузок. Выводы. Процессуальная мотивация, сформированная для преодоления дополнительного респираторного сопротивления, существенно повышает переносимость средств индивидуальной защиты органов дыхания, что имеет большое значение для сохранения здоровья работающих в условиях загрязненной производственной среды. Ключевые слова: мотивация, переносимость, увеличенное сопротивление дыханию.


1982 ◽  
Vol 63 (1) ◽  
pp. 11-15 ◽  
Author(s):  
J. G. W. Burdon ◽  
K. J. Killian ◽  
E. J. M. Campbell

1. Detection latency of a range of added elastic (0·95–4·50 kPa/l) and resistive (0·73–3·29 kPa l−1 s) loads to breathing were measured in five normal subjects. Detection latency was defined as the time from the onset of the breath to detection of the load. 2. Detection latency followed a curvilinear relationship when plotted as a function of the magnitude of the added loads. A similar relationship was found with both elastic and resistive loads although detection latencies to added elastances were longer than for added resistances. 3. When the added load was expressed in terms of comparable magnitude (peak inspiratory pressure) detection latencies for added elastances were found to be consistently longer than for added resistive loads. 4. These studies show that the detection latency to added inspiratory loads follows a reciprocal relationship, that detection latencies for elastic and resistive loads are clearly different and suggest that these loads are detected during the respiratory cycle at a time when the mechanical information regarding muscular pressure is greatest.


1980 ◽  
Vol 49 (4) ◽  
pp. 601-608 ◽  
Author(s):  
B. Gothe ◽  
N. S. Cherniack

We examined the effects of expiratory resistive loads of 10 and 18 cmH2O.l-1.s in healthy subjects on ventilation and occlusion pressure responses to CO2, respiratory muscle electromyogram, pattern of breathing, and thoracoabdominal movements. In addition, we compared ventilation and occlusion pressure responses to CO2 breathing elicited by breathing through an inspiratory resistive load of 10 cmH2O.l-1.s to those produced by an expiratory load of similar magnitude. Both inspiratory and expiratory loads decreased ventilatory responses to CO2 and increased the tidal volume achieved at any given level of ventilation. Depression of ventilatory responses to Co2 was greater with the larger than with the smaller expiratory load, but the decrease was in proportion to the difference in the severity of the loads. Occlusion pressure responses were increased significantly by the inspiratory resistive load but not by the smaller expiratory load. However, occlusion pressure responses to CO2 were significantly larger with the greater expiratory load than control. Increase in occlusion pressure observed could not be explained by changes in functional residual capacity or chemical drive. The larger expiratory load also produced significant increases in electrical activity measured during both inspiration and expiration. These results suggest that sufficiently severe impediments to breathing, even when they are exclusively expiratory, can enhance inspiratory muscle activity in conscious humans.


1983 ◽  
Vol 54 (6) ◽  
pp. 1525-1531 ◽  
Author(s):  
E. L. DeWeese ◽  
T. Y. Sullivan ◽  
P. L. Yu

To characterize the ventilatory response to resistive unloading, we studied the effect of breathing 79.1% helium-20.9% oxygen (He-O2) on ventilation and on mouth pressure measured during the first 100 ms of an occluded inspiration (P100) in normal subjects at rest. The breathing circuit was designed so that external resistive loads during both He-O2 and air breathing were similar. Lung resistance, measured in three subjects with an esophageal balloon technique, was reduced by 23 +/- 8% when breathing He-O2. Minute ventilation, tidal volume, respiratory frequency, end-tidal partial pressure of CO2, inspiratory and expiratory durations, and mean inspiratory flow were not significantly different when air was replaced by He-O2. P100, however, was significantly less during He-O2 breathing. We conclude that internal resistive unloading by He-O2 breathing reduces the neuromuscular output required to maintain constant ventilation. Unlike studies involving inhaled bronchodilators, this technique affords a method by which unloading can be examined independent of changes in airway tone.


Neurocase ◽  
2013 ◽  
Vol 20 (4) ◽  
pp. 421-433 ◽  
Author(s):  
M. Gallo ◽  
F. Gámiz ◽  
M. Perez-García ◽  
R. G. del Moral ◽  
E. T. Rolls
Keyword(s):  

1991 ◽  
Vol 70 (3) ◽  
pp. 1284-1289 ◽  
Author(s):  
P. W. Davenport ◽  
D. J. Dalziel ◽  
B. Webb ◽  
J. R. Bellah ◽  
C. J. Vierck

The physiological mechanisms mediating the detection of mechanical loads are unknown. This is, in part, due to the lack of an animal model of load detection that could be used to investigate specific sensory systems. We used American Foxhounds with tracheal stomata to behaviorally condition the detection of inspiratory occlusion and graded resistive loads. The resistive loads were presented with a loading manifold connected to the inspiratory port of a non-rebreathing valve. The dogs signaled detection of the load by lifting their front paw off a lever. Inspiratory occlusion was used as the initial training stimulus, and the dogs could reliably respond within the first or second inspiratory effort to 100% of the occlusion presentations after 13 trials. Graded resistances that spanned the 50% detection threshold were then presented. The detection threshold resistances (delta R50) were 0.96 and 1.70 cmH2O.l-1.s. Ratios of delta R50 to background resistance were 0.15 and 0.30. The near-threshold resistive loads did not significantly change expired PCO2 or breathing patterns. These results demonstrate that dogs can be conditioned to reliably and specifically signal the detection of graded inspiratory mechanical loads. Inspiration through the tracheal stoma excludes afferents in the upper extrathoracic trachea, larynx, pharynx, nasal passages, and mouth from mediating load detection in these dogs. It is unknown which remaining afferents (vagal or respiratory muscle) are responsible for load detection.


1991 ◽  
Vol 34 (4) ◽  
pp. 761-767 ◽  
Author(s):  
Elaine T. Stathopoulos ◽  
Jeannette D. Hoit ◽  
Thomas J. Hixon ◽  
Peter J. Watson ◽  
Nancy Pearl Solomon

Established procedures for making chest wall kinematic observations (Hoit & Hixon, 1987) and pressure-flow observations (Smitheran & Hixon, 1981) were used to study respiratory and laryngeal function during whispering and speaking in 10 healthy young adults. Results indicate that whispering involves generally lower lung volumes, lower tracheal pressures, higher translaryngeal flows, lower laryngeal airway resistances, and fewer syllables per breath group when compared to speaking. The use of lower lung volumes during whispering than speaking may reflect a means of achieving different tracheal pressure targets. Reductions in the number of syllables produced per breath group may be an adjustment to the high rate of air expenditure accompanying whispering compared to speaking. Performance of the normal subjects studied in this investigation does not resemble that of individuals with speech and voice disorders characterized by low resistive loads.


2014 ◽  
Vol 663 ◽  
pp. 299-303 ◽  
Author(s):  
Ubaidillah ◽  
Suyitno ◽  
Imam Ali ◽  
Eko Prasetya Budiana ◽  
Wibawa Endra Juwana

Thermoelectric generator is solid-state device which convert temperature difference, ∆T into electrical energy based on Seebeck effect phenomenon. The device has been widely used in self-powered system applications. This paper focuses on presentation of methodology for characterizing thermoelectric generators. The measurement of its behavior is performed by varying load resistances. A standard module of thermoelectric generator (TEC1-12710) is used in examination and an instrument setup consists of controllable heat source, controllable cooler, personal computer, data logger MCC DAQ USB-1208LS equipped with two sets of K-type thermocouples. The experiment is performed by measuring output voltage and output current in 4 values of temperature gradient by applying 10 values of resistive loads connected to the thermoelectric output wires. The common parameters studied in this research are output voltage, current and power. Generally, the relationship between parameters agrees with the basic theory and the procedure can be adopted for characterizing other type of thermoelectric generator.


Sign in / Sign up

Export Citation Format

Share Document