scholarly journals A functional analysis of the CREB signaling pathway using HaloCHIP-chip and high throughput reporter assays

BMC Genomics ◽  
2009 ◽  
Vol 10 (1) ◽  
pp. 497 ◽  
Author(s):  
Danette D Hartzell ◽  
Nathan D Trinklein ◽  
Jacqui Mendez ◽  
Nancy Murphy ◽  
Shelley F Aldred ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Takumi Kayukawa ◽  
Kenjiro Furuta ◽  
Keisuke Nagamine ◽  
Tetsuro Shinoda ◽  
Kiyoaki Yonesu ◽  
...  

Abstract Insecticide resistance has recently become a serious problem in the agricultural field. Development of insecticides with new mechanisms of action is essential to overcome this limitation. Juvenile hormone (JH) is an insect-specific hormone that plays key roles in maintaining the larval stage of insects. Hence, JH signaling pathway is considered a suitable target in the development of novel insecticides; however, only a few JH signaling inhibitors (JHSIs) have been reported, and no practical JHSIs have been developed. Here, we established a high-throughput screening (HTS) system for exploration of novel JHSIs using a Bombyx mori cell line (BmN_JF&AR cells) and carried out a large-scale screening in this cell line using a chemical library. The four-step HTS yielded 69 compounds as candidate JHSIs. Topical application of JHSI48 to B. mori larvae caused precocious metamorphosis. In ex vivo culture of the epidermis, JHSI48 suppressed the expression of the Krüppel homolog 1 gene, which is directly activated by JH-liganded receptor. Moreover, JHSI48 caused a parallel rightward shift in the JH response curve, suggesting that JHSI48 possesses a competitive antagonist-like activity. Thus, large-scale HTS using chemical libraries may have applications in development of future insecticides targeting the JH signaling pathway.


2006 ◽  
Vol 12 (1) ◽  
pp. 140-144 ◽  
Author(s):  
Michael K. Hancock ◽  
Myleen N. Medina ◽  
Brendan M. Smith ◽  
Anthony P. Orth

Reporter assays are commonly used for high-throughput cell-based screening of compounds, cDNAs, and siRNAs due to robust signal, ease of miniaturization, and simple detection and analysis. Among the most widely used reporter genes is the bioluminescent enzyme luciferase, which, when exposed to its substrate luciferin upon cell lysis, yields linear signal over a dynamic range of several orders of magnitude. Commercially available luciferase assay formulations have been developed permitting homogeneous, single-step cell lysis and reporter activity measurements. Assay conditions employed with these formulations are typically designed to minimize well-to-well luminescence variability due to variability in dispensing, evaporation, and incomplete sample mixing. The authors demonstrate that incorporating a microplate orbital mixing step into 96- and 384-well microplate cell-based luciferase reporter assays can greatly improve reporter readouts. They have found that orbital mixing using commercially available mixers facilitates maximal luciferase signal generation from high cell density–containing samples while minimizing variability due to partial cell lysis, thereby improving assay precision. The authors fully expect that widespread availability of mixers with sufficiently small orbits and higher speed settings will permit gains in signal and precision in the 1536-well format as well.


2020 ◽  
Author(s):  
Tian Qi Zhang ◽  
Qingqiang Dai ◽  
Maneesh Kumarsing Beeharry ◽  
Zhenqiang Wang ◽  
Liping Su ◽  
...  

Abstract Background: Gastric Cancer (GC) is one of the leading causes of cancer-related deaths and mortality. Long non-coding RNAs (lncRNAs) such as SNHG12 play important roles in the pathogenesis and progression of cancers. However, the role and significanve of SNHG12 in the metastasis of GC has not yet been thoroughly investigated.Methods: The SNHG12 expression pattern was detected in GC tissue samples from our faculty and cell lines using quantitative reverse transcription PCR. In vivo and in vitro gain and loss assays were conducted to observe the effects of SNHG12 regulation on GC cell metastasis potential. The underlying mechanisms of SNHG12 regulation on EMT and metastatic potential of GC cells were further determined by quantitative reverse transcription PCR, western blotting, dual luciferase reporter assays, co-immunoprecipitation, immunoprecipitation, RIP assays, TOPFlash/FOPFlash reporter assays and Ch-IP assays.Results: SNHG12 was upregulated in GC tissues and cell lines. The expression levels of SNHG12 in GC samples was significantly related to tumor invasion depth, TNM staging and lymph node metastasis, and was associated with poorer DFS and OS in the GC patients. SNHG12 was significantly highly expressed in peritoneal metastatic tissues from GC patients and mice subjects, suggesting a possible role of SNHG12 in peritoneal carcinomatosis from GC. Further in vivo and in vitro gain and loss assays indicated that SNHG12 promoted GC metastasis and EMT. Based on hypothetical bioinformatic analysis findings, our mechanistic analyses revealed that miR-218-5p was a direct target of SNHG12 and suggested that both SNHG12 and miR-218-5p could collectively regulate YWHAZ, forming the SNHG12/ miR-218-5p/YWHAZ axis, hereby decreasing the ubiquitination of β-catenin, thus activating the β-catenin signaling pathway and facilitating metastasis and EMT. Further analysis also revealed that the transcription factor YY1 could negatively modulate SNHG12 transcription.Conclusions: Our findings demonstrate that SNHG12 is be a potential prognostic marker and therapeutic target for GC. Negatively modulated by transcription factor YYI, SNHG12 promotes GC metastasis and EMT by regulating the miR-218-5p/YWHAZ axis and hence activating the β-catenin signaling pathway. Furthermore, we discovered high SNHG12 expression could be related to peritoneal carcinomatosis from GC but this requires further validation.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Qianwen Shao ◽  
Jing Xu ◽  
Rong Deng ◽  
Wei Wei ◽  
Bing Zhou ◽  
...  

Abstract Background Small nucleolar RNA host gene 6 (SNHG6) regulates diverse biological processes in cancers. Potential function of SNHG6 in human colon and rectal adenocarcinoma (CRC) was evaluated. Methods Quantitative real-time polymerase chain reaction, MTT assays, Colony formation assays, Transwell assay, Western Blotting and Luciferase reporter assays were performed to measure the biological functions and potential molecular mechanisms of SNHG6 in CRC. Results SNHG6 was over-expressed in CRC, and high expression of s SNHG6 were associated with short survival times. We then identified miR-101-3p as an inhibitory target of SNHG6. Knockdown of SNHG6 significantly decreased miR-101-3p expression. Moreover, silenced SNHG6 obviously inhibited CRC cell growth, weakened cell invasion capacity and blocked the Wnt/β-catenin signaling pathway. Conclusion SNHG6 could regulate the progression of CRC via modulating the expression levels of miR-101-3p and the activity of Wnt/β-catenin signaling.


2016 ◽  
Vol 44 (11) ◽  
pp. 1903-1919 ◽  
Author(s):  
Xiaoqi Jiang ◽  
Steven Wink ◽  
Bob van de Water ◽  
Annette Kopp-Schneider

2020 ◽  
Vol 30 (4) ◽  
pp. 647-659 ◽  
Author(s):  
Alexey Vorobev ◽  
Marion Dupouy ◽  
Quentin Carradec ◽  
Tom O. Delmont ◽  
Anita Annamalé ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document