scholarly journals Three-dimensional visualisation of developmental stages of an apicomplexan fish blood parasite in its invertebrate host

2011 ◽  
Vol 4 (1) ◽  
Author(s):  
Polly M Hayes ◽  
David F Wertheim ◽  
Nico J Smit ◽  
Alan M Seddon ◽  
Angela J Davies
Author(s):  
J. P. Revel

Movement of individual cells or of cell sheets and complex patterns of folding play a prominent role in the early developmental stages of the embryo. Our understanding of these processes is based on three- dimensional reconstructions laboriously prepared from serial sections, and from autoradiographic and other studies. Many concepts have also evolved from extrapolation of investigations of cell movement carried out in vitro. The scanning electron microscope now allows us to examine some of these events in situ. It is possible to prepare dissections of embryos and even of tissues of adult animals which reveal existing relationships between various structures more readily than used to be possible vithout an SEM.


PLoS ONE ◽  
2018 ◽  
Vol 13 (9) ◽  
pp. e0204437 ◽  
Author(s):  
Dóra Sipos ◽  
Krisztina Ursu ◽  
Ádám Dán ◽  
Dávid Herczeg ◽  
Edit Eszterbauer

Development ◽  
1988 ◽  
Vol 104 (1) ◽  
pp. 77-85 ◽  
Author(s):  
M.L. Snead ◽  
W. Luo ◽  
E.C. Lau ◽  
H.C. Slavkin

Position- and time-restricted amelogenin gene transcription was analysed in developing tooth organs using in situ hybridization with asymmetric complementary RNA probes produced from a cDNA specific to the mouse 26 × 10(3) Mr amelogenin. In situ analysis was performed on developmentally staged fetal and neonatal mouse mandibular first (M1) and maxillary first (M1) molar tooth organs using serial sections and three-dimensional reconstruction. Amelogenin mRNA was first detected in a cluster of ameloblasts along one cusp of the M1 molar at the newborn stage of development. In subsequent developmental stages, amelogenin transcripts were detected within foci of ameloblasts lining each of the five cusps comprising the molar crown form. The number of amelogenin transcripts appeared to be position-dependent, being more abundant on one cusp surface while reduced along the opposite surface. Amelogenin gene transcription was found to be bilaterally symmetric between the developing right and left M1 molars, and complementary between the M1 and M1 developing molars; indicating position-restricted gene expression resulting in organ stereoisomerism. The application of in situ hybridization to forming tooth organ geometry provides a novel strategy to define epithelial-mesenchymal signal(s) which are believed to be responsible for organ morphogenesis, as well as for temporal- and spatial-restricted tissue-specific expression of enamel extracellular matrix.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Maryse Lapierre-Landry ◽  
Hana Kolesová ◽  
Yehe Liu ◽  
Michiko Watanabe ◽  
Michael W. Jenkins

Abstract While major coronary artery development and pathologies affecting them have been extensively studied, understanding the development and organization of the coronary microvasculature beyond the earliest developmental stages requires new tools. Without techniques to image the coronary microvasculature over the whole heart, it is likely we are underestimating the microvasculature’s impact on normal development and diseases. We present a new imaging and analysis toolset to visualize the coronary microvasculature in intact embryonic hearts and quantify vessel organization. The fluorescent dyes DiI and DAPI were used to stain the coronary vasculature and cardiomyocyte nuclei in quail embryo hearts during rapid growth and morphogenesis of the left ventricular wall. Vessel and cardiomyocytes orientation were automatically extracted and quantified, and vessel density was calculated. The coronary microvasculature was found to follow the known helical organization of cardiomyocytes in the ventricular wall. Vessel density in the left ventricle did not change during and after compaction. This quantitative and automated approach will enable future cohort studies to understand the microvasculature’s role in diseases such as hypertrophic cardiomyopathy where misalignment of cardiomyocytes has been observed in utero.


Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Rachele Tofanelli ◽  
Athul Vijayan ◽  
Sebastian Scholz ◽  
Kay Schneitz

Abstract Background A salient topic in developmental biology relates to the molecular and genetic mechanisms that underlie tissue morphogenesis. Modern quantitative approaches to this central question frequently involve digital cellular models of the organ or tissue under study. The ovules of the model species Arabidopsis thaliana have long been established as a model system for the study of organogenesis in plants. While ovule development in Arabidopsis can be followed by a variety of different imaging techniques, no experimental strategy presently exists that enables an easy and straightforward investigation of the morphology of internal tissues of the ovule with cellular resolution. Results We developed a protocol for rapid and robust confocal microscopy of fixed Arabidopsis ovules of all stages. The method combines clearing of fixed ovules in ClearSee solution with marking the cell outline using the cell wall stain SCRI Renaissance 2200 and the nuclei with the stain TO-PRO-3 iodide. We further improved the microscopy by employing a homogenous immersion system aimed at minimizing refractive index differences. The method allows complete inspection of the cellular architecture even deep within the ovule. Using the new protocol we were able to generate digital three-dimensional models of ovules of various stages. Conclusions The protocol enables the quick and reproducible imaging of fixed Arabidopsis ovules of all developmental stages. From the imaging data three-dimensional digital ovule models with cellular resolution can be rapidly generated using image analysis software, for example MorphographX. Such digital models will provide the foundation for a future quantitative analysis of ovule morphogenesis in a model species.


1966 ◽  
Vol 28 (3) ◽  
pp. 527-543 ◽  
Author(s):  
Lothar Diers

In the liverwort Sphaerocarpus donnellii Aust., the behavior of the cell constituents, especially of mitochondria and plastids, was studied by electron microscopy during the development of the egg and its preceding cells. A degeneration and elimination of mitochondria and plastids was not found in any of the developmental stages. In all growth phases of the archegonium, the plastids may deposit starch which becomes especially frequent in the maturing egg cell. No indications have been observed that new mitochondria or plastids generate from the nuclear evaginations, which often penetrate deeply into the cytoplasm of the maturing and fully developed eggs. A quantitative investigation based on general micrographs elucidates the numerical aspects of the cell constituents during oögenesis. With the increase of cell volume, the numbers of dictyosomes, mitochondria, plastids, and lipid bodies increase. From the stages of the mother cell of the axial row up to that of the mature egg, the cell volume enlarges about 8 times and the nucleus volume about 15 times. Simultaneously, the numbers of mitochondria and plastids increase up to 8 to 15 times. On the basis of these findings, mitochondria and plastids with three-dimensional narrow constrictions are interpreted as divisional stages.


1968 ◽  
Vol 46 (5) ◽  
pp. 720-722 ◽  
Author(s):  
Rolf Sattler

When floral buds are studied by serial sectioning, the obtained three-dimensional picture of the buds is a reconstruction which involves some theoretical elements. In contrast to this reconstructive method, the described technique permits the direct study of the three-dimensional developmental stages of flowers. Protoderm cells of floral apices and primordial appendages can be demonstrated.


1970 ◽  
Vol 48 (5) ◽  
pp. 945-957 ◽  
Author(s):  
Gordon F. Bennett

Development of strains of the Trypanosoma avium complex were studied in an experimental vector, Aedes aegypti. Developmental stages in the midgut and the rate of multiplication of the trypanosomes in mosquitoes held at different temperatures are described. Some factors influencing the multiplication of T. avium in the invertebrate host are discussed and observations on the development of the flagellates in simuliids, ceratopoginids, and tabanids are presented.


Science ◽  
2020 ◽  
Vol 367 (6476) ◽  
pp. eaay1645 ◽  
Author(s):  
Alexandro E. Trevino ◽  
Nasa Sinnott-Armstrong ◽  
Jimena Andersen ◽  
Se-Jin Yoon ◽  
Nina Huber ◽  
...  

Forebrain development is characterized by highly synchronized cellular processes, which, if perturbed, can cause disease. To chart the regulatory activity underlying these events, we generated a map of accessible chromatin in human three-dimensional forebrain organoids. To capture corticogenesis, we sampled glial and neuronal lineages from dorsal or ventral forebrain organoids over 20 months in vitro. Active chromatin regions identified in human primary brain tissue were observed in organoids at different developmental stages. We used this resource to map genetic risk for disease and to explore evolutionary conservation. Moreover, we integrated chromatin accessibility with transcriptomics to identify putative enhancer-gene linkages and transcription factors that regulate human corticogenesis. Overall, this platform brings insights into gene-regulatory dynamics at previously inaccessible stages of human forebrain development, including signatures of neuropsychiatric disorders.


Sign in / Sign up

Export Citation Format

Share Document