scholarly journals Effects of ulinastatin and docataxel on breast tumor growth and expression of IL-6, IL-8, and TNF-α

2011 ◽  
Vol 30 (1) ◽  
pp. 22 ◽  
Author(s):  
Xiaoliang Zhao ◽  
Xin Sun ◽  
Feng Gao ◽  
Jie Luo ◽  
Zhijun Sun
Keyword(s):  
2004 ◽  
Vol 85 (2) ◽  
pp. 133-142 ◽  
Author(s):  
Nina Oestreicher ◽  
Emily White ◽  
Kathleen E. Malone ◽  
Peggy L. Porter

Endocrinology ◽  
2013 ◽  
Vol 154 (5) ◽  
pp. 1701-1710 ◽  
Author(s):  
Ran Rostoker ◽  
Keren Bitton-Worms ◽  
Avishay Caspi ◽  
Zila Shen-Orr ◽  
Derek LeRoith

Abstract Epidemiological and experimental studies have identified hyperinsulinemia as an important risk factor for breast cancer induction and for the poor prognosis in breast cancer patients with obesity and type 2 diabetes. Recently it was demonstrated that both the insulin receptor (IR) and the IGF-IR mediate hyperinsulinemia's mitogenic effect in several breast cancer models. Although IGF-IR has been intensively investigated, and anti-IGF-IR therapies are now in advanced clinical trials, the role of the IR in mediating hyperinsulinemia's mitogenic effect remains to be clarified. Here we aimed to explore the potential of IR inhibition compared to dual IR/IGF-IR blockade on breast tumor growth. To initiate breast tumors, we inoculated the mammary carcinoma Mvt-1 cell line into the inguinal mammary fat pad of the hyperinsulinemic MKR female mice, and to study the role of IR, we treated the mice bearing tumors with the recently reported high-affinity IR antagonist-S961, in addition to the well-documented IGF-IR inhibitor picropodophyllin (PPP). Although reducing IR activation, with resultant severe hyperglycemia and hyperinsulinemia, S961-treated mice had significantly larger tumors compared to the vehicle-treated group. This effect maybe secondary to the severe hyperinsulinemia mediated via the IGF-1 receptor. In contrast, PPP by partially inhibiting both IR and IGF-IR activity reduced tumor growth rate with only mild metabolic consequences. We conclude that targeting (even partially) both IR and IGF-IRs impairs hyperinsulinemia's effects in breast tumor development while simultaneously sparing the metabolic abnormalities observed when targeting IR alone with virtual complete inhibition.


iScience ◽  
2021 ◽  
Vol 24 (9) ◽  
pp. 103012
Author(s):  
Alastair M. McKee ◽  
Benjamin M. Kirkup ◽  
Matthew Madgwick ◽  
Wesley J. Fowler ◽  
Christopher A. Price ◽  
...  

2014 ◽  
Vol 28 (6) ◽  
pp. 2655-2666 ◽  
Author(s):  
Matthew G. K. Benesch ◽  
Xiaoyun Tang ◽  
Tatsuo Maeda ◽  
Akira Ohhata ◽  
Yuan Y. Zhao ◽  
...  

Author(s):  
Patrycja Guzik ◽  
Klaudia Siwowska ◽  
Hsin-Yu Fang ◽  
Susan Cohrs ◽  
Peter Bernhardt ◽  
...  

Abstract Purpose It was previously demonstrated that radiation effects can enhance the therapy outcome of immune checkpoint inhibitors. In this study, a syngeneic breast tumor mouse model was used to investigate the effect of [177Lu]Lu-DOTA-folate as an immune stimulus to enhance anti-CTLA-4 immunotherapy. Methods In vitro and in vivo studies were performed to characterize NF9006 breast tumor cells with regard to folate receptor (FR) expression and the possibility of tumor targeting using [177Lu]Lu-DOTA-folate. A preclinical therapy study was performed over 70 days with NF9006 tumor-bearing mice that received vehicle only (group A); [177Lu]Lu-DOTA-folate (5 MBq; 3.5 Gy absorbed tumor dose; group B); anti-CTLA-4 antibody (3 × 200 μg; group C), or both agents (group D). The mice were monitored regarding tumor growth over time and signs indicating adverse events of the treatment. Results [177Lu]Lu-DOTA-folate bound specifically to NF9006 tumor cells and tissue in vitro and accumulated in NF9006 tumors in vivo. The treatment with [177Lu]Lu-DOTA-folate or an anti-CTLA-4 antibody had only a minor effect on NF9006 tumor growth and did not substantially increase the median survival time of mice (23 day and 19 days, respectively) as compared with untreated controls (12 days). [177Lu]Lu-DOTA-folate sensitized, however, the tumors to anti-CTLA-4 immunotherapy, which became obvious by reduced tumor growth and, hence, a significantly improved median survival time of mice (> 70 days). No obvious signs of adverse effects were observed in treated mice as compared with untreated controls. Conclusion Application of [177Lu]Lu-DOTA-folate had a positive effect on the therapy outcome of anti-CTLA-4 immunotherapy. The results of this study may open new perspectives for future clinical translation of folate radioconjugates.


2021 ◽  
Author(s):  
Guru Prasad Sharma ◽  
Ramoji Kosuru ◽  
Sribalaji Lakshmikanthan ◽  
Shikan Zheng ◽  
Yao Chen ◽  
...  

Overcoming vascular immunosuppression: lack of endothelial cell (EC) responsiveness to inflammatory stimuli in the proangiogenic environment of tumors, is essential for successful cancer immunotherapy. The mechanisms through which Vascular Endothelial Growth Factor (VEGF) modulates tumor EC response to exclude T cells are not well understood. The goal was to determine the role of EC Rap1B, a small GTPase that positively regulates VEGFangiogenesis during development, in tumor growth in vivo. Using mouse models of Rap1B deficiency, Rap1B+/- and EC-specific Rap1B KO (Rap1BiΔEC) we demonstrate that EC Rap1B restricts tumor growth and angiogenesis. More importantly, EC-specific Rap1B deletion leads to an altered tumor microenvironment with increased recruitment of leukocytes and increased activity of tumor CD8+ T cells. We find that tumor growth, albeit not angiogenesis, is restored in Rap1BiΔEC mice by depleting CD8+ T cells. Mechanistically, global transcriptome analysis indicated upregulation of the tumor cytokine, TNF-α, -induced signaling and NFκB transcriptional activity in Rap1B-deficient ECs. Functionally, EC Rap1B deletion led to upregulation of NFκB activity and enhanced Cell Adhesion Molecules (CAMs) expression in TNF-α stimulated ECs. Importantly, CAM expression was upregulated also in tumor ECs from Rap1BiΔEC mice, vs. controls. Significantly, deletion of Rap1B abrogated VEGF immunosuppressive downregulation of CAM expression, demonstrating that Rap1B is essential for VEGF-suppressive signaling. Thus, our studies identify a novel endothelial-endogenous mechanism underlying VEGF-dependent desensitization of EC to pro-inflammatory stimuli. Significantly, they identify EC Rap1 as a potential novel vascular target in cancer immunotherapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Paul D. Bates ◽  
Alexander L. Rakhmilevich ◽  
Monica M. Cho ◽  
Myriam N. Bouchlaka ◽  
Seema L. Rao ◽  
...  

Management for high-risk neuroblastoma (NBL) has included autologous hematopoietic stem cell transplant (HSCT) and anti-GD2 immunotherapy, but survival remains around 50%. The aim of this study was to determine if allogeneic HSCT could serve as a platform for inducing a graft-versus-tumor (GVT) effect against NBL with combination immunocytokine and NK cells in a murine model. Lethally irradiated C57BL/6 (B6) x A/J recipients were transplanted with B6 bone marrow on Day +0. On day +10, allogeneic HSCT recipients were challenged with NXS2, a GD2+ NBL. On days +14-16, mice were treated with the anti-GD2 immunocytokine hu14.18-IL2. In select groups, hu14.18-IL2 was combined with infusions of B6 NK cells activated with IL-15/IL-15Rα and CD137L ex vivo. Allogeneic HSCT alone was insufficient to control NXS2 tumor growth, but the addition of hu14.18-IL2 controlled tumor growth and improved survival. Adoptive transfer of ex vivo CD137L/IL-15/IL-15Rα activated NK cells with or without hu14.18-IL2 exacerbated lethality. CD137L/IL-15/IL-15Rα activated NK cells showed enhanced cytotoxicity and produced high levels of TNF-α in vitro, but induced cytokine release syndrome (CRS) in vivo. Infusing Perforin-/- CD137L/IL-15/IL-15Rα activated NK cells had no impact on GVT, whereas TNF-α-/- CD137L/IL-15/IL-15Rα activated NK cells improved GVT by decreasing peripheral effector cell subsets while preserving tumor-infiltrating lymphocytes. Depletion of Ly49H+ NK cells also improved GVT. Using allogeneic HSCT for NBL is a viable platform for immunocytokines and ex vivo activated NK cell infusions, but must be balanced with induction of CRS. Regulation of TNFα or activating NK subsets may be needed to improve GVT effects.


Sign in / Sign up

Export Citation Format

Share Document