scholarly journals Ex-vivo expanded human NK cells mediate cytotoxicity and cytokine release against allogeneic cancer cell line by direct recognition and antibody directed cellular cytotoxicity: therapeutic potential use of NK cells for blood and solid tumors

2014 ◽  
Vol 2 (S1) ◽  
Author(s):  
Abdelhamid Liacini ◽  
Noureddine Berka ◽  
Faisal Khan
Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1848-1848
Author(s):  
Maria Karvouni ◽  
Heyue Zhou ◽  
Arnika Kathleen Wagner ◽  
Qiangzhong Ma ◽  
Alamdar H. Baloch ◽  
...  

Background: Multiple myeloma (MM) is a plasma cell malignancy that remains incurable. The identification of CD38, a transmembrane glycoprotein overexpressed on MM cells, led to the development of target-specific therapeutics such as the FDA approved monoclonal antibody (mAb) Daratumumab (DARA). Although a valuable treatment option for refractory/relapsed (R/R) MM patients, DARA has a limited response rate of below 50%, which highlights the clinical need for novel therapeutics. Aims: Aiming to further exploit the therapeutic potential of CD38 in the MM setting, immunotherapies based on the novel anti-CD38 mAb CD38A2 were tested. Methods: For the first approach, the CD38A2 mAb -that binds to a unique, distinct from DARA's, CD38 epitope- was conjugated with either the alkylating agent Duomycin (ADC-136) or the microtubulin binder Duostatin (ADC-129). The ADCs were compared to DARA, in cultures of primary MM cells from patients refractory to DARA treatment. In a second approach, a chimeric antigen receptor (CAR) consisting of the CD38A2 scFv and the intracellular domains of CD28 and CD3ζ was used to transduce primary T and NK cells from R/R MM patients. The functionality of the CAR-T and CAR-NK cells was assessed in cytotoxicity assays against autologous myeloma cells. Results: ADC-136 demonstrated the most potent cytotoxicity against the MM cells with an IC50 of 6pM at day 6 following a single dose treatment. ADC-129 showed cell killing with an IC50 of 30pM, while DARA did not exhibit appreciable cytotoxicity. Regarding the cell therapy approach, patients' T and NK cells were effectively transduced, showing a CD38A2-CAR expression ranging between 11-68%. In functional assays, CAR-T and CAR-NK cells were assayed against autologous myeloma cells, where they exhibited an increase in target cell cytotoxicity, compared to the untransduced cells. Summary/Conclusion: Altogether, our preliminary findings demonstrate that CD38 targeting using CD38A2-based immunotherapies could be a viable therapeutic approach in R/R MM patients previously exposed to DARA. Currently, an anti-CD38 CAR-T therapy based on CD38A2 is being evaluated in Phase 1 studies in R/R MM patients by Sorrento Therapeutics, Inc. Disclosures Zhou: Sorrento Therapeutics Inc: Employment, Equity Ownership. Ma:Sorrento Therapeutics Inc: Employment, Equity Ownership. Zhu:Sorrento Therapeutics Inc: Employment, Equity Ownership. Zhang:Sorrento Therapeutics Inc: Employment, Equity Ownership. Kaufmann:Sorrento Therapeutics, Inc.: Employment, Equity Ownership, Patents & Royalties.


Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1363
Author(s):  
Elena V. Abakushina ◽  
Liubov I. Popova ◽  
Andrey A. Zamyatnin ◽  
Jens Werner ◽  
Nikolay V. Mikhailovsky ◽  
...  

In the last decade, an impressive advance was achieved in adoptive cell therapy (ACT), which has improved therapeutic potential and significant value in promising cancer treatment for patients. The ACT is based on the cell transfer of dendritic cells (DCs) and/or immune effector cells. DCs are often used as vaccine carriers or antigen-presenting cells (APCs) to prime naive T cells ex vivo or in vivo. Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells are used as major tool effector cells for ACT. Despite the fact that NK cell immunotherapy is highly effective and promising against many cancer types, there are still some limitations, including insignificant infiltration, adverse conditions of the microenvironment, the immunosuppressive cellular populations, and the low cytotoxic activity in solid tumors. To overcome these difficulties, novel methods of NK cell isolation, expansion, and stimulation of cytotoxic activity should be designed. In this review, we discuss the basic characteristics of DC vaccines and NK cells as potential adoptive cell preparations in cancer therapy.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15201-e15201
Author(s):  
Svetlana Yu. Filippova ◽  
Oleg I. Kit ◽  
Anastasia O. Sitkovskaya ◽  
Elena Yu. Zlatnik ◽  
Inna A. Novikova ◽  
...  

e15201 Background: A review of scientific literature has shown that IL-2 is most often used for the LAK generation, while the potential of other NK-stimulating interleukin cells remains poorly understood. In this study, we investigated the effect of IL-7 and IL-15 on ex vivo LAC generation. Methods: A fraction enriched in NK cells was isolated by magnetic cell sorting with the NK Cell Isolation Kit (#130-092-657, Miltenyi Biotec, Germany) from PBMC in 11 patients with stage II-III breast cancer without treatment. Cells were introduced into a 6-well 3x105 plate in RPMI medium (Gibco, USA) supplemented with 10% FBS (Gibco, USA). Cytokines 40 ng/ml were added to the wells in 6 variants: 1) IL-15; 2) IL-2; 3) IL-7; 4) IL-15+IL-7; 5) IL-15+IL-7+IL-2; 6) control without cytokines. Cells were cultured at 5.0% CO2 and 37°C. Cells were counted with a hemocytometer daily for 5 days and on days 8, 9 and 10 of cultivation. Results: The number of NK cells in control samples gradually decreased: by 2 times on day 5 and by 3 times on day 10. On day 5, the number of NK cells was 1.5 times higher than in the control when cultured with IL-2, and 1.4 times higher when cultured with IL-7+IL-15. After 9 days, a statistically significant increase in the number of cells, compared to the control sample, was observed with the addition of IL-2 (1.6 times); IL-15 and IL-7+IL-15 (1.5 times). On day 10, significant differences from the control were found in most samples: the number of cells was higher in samples cultured with IL-2 and IL-7+IL-15 (1.9 times) and with IL-15 and IL-2+IL-7+IL-15 (1.7 times). IL-7 alone led to a gradual decrease in the number of cells, and on days 8, 9 and 10 it was lower than in the control samples. Conclusions: In general, the introduction of cytokines into the samples enriched with NK cells contributed to the preservation of this subpopulation on days 5-10 of cultivation. However, the use of IL-7 and IL-15, both alone and in combination, did not lead to a significant increase in LAK compared to the use of IL-2.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3199-3199 ◽  
Author(s):  
Subhashis Sarkar ◽  
Sachin Chauhan ◽  
Arwen Stikvoort ◽  
Alessandro Natoni ◽  
John Daly ◽  
...  

Abstract Introduction: Multiple Myeloma (MM) is a clonal plasma cell malignancy typically associated with the high and uniform expression of CD38 transmembrane glycoprotein. Daratumumab is a humanized IgG1κ CD38 monoclonal antibody (moAb) which has demonstrated impressive single agent activity even in relapsed refractory MM patients as well as strong synergy with other anti-MM drugs. Natural Killer (NK) cells are cytotoxic immune effector cells mediating tumour immunosurveillance in vivo. NK cells also play an important role during moAb therapy by inducing antibody dependent cellular cytotoxicity (ADCC) via their Fcγ RIII (CD16) receptor. Furthermore, 15% of the population express a naturally occurring high affinity variant of CD16 harbouring a single point polymorphism (F158V), and this variant has been linked to improved ADCC. However, the contribution of NK cells to the efficacy of Daratumumab remains debatable as clinical data clearly indicate rapid depletion of CD38high peripheral blood NK cells in patients upon Daratumumab administration. Therefore, we hypothesize that transiently expressing the CD16F158V receptor using a "safe" mRNA electroporation-based approach, on CD38low NK cells could significantly enhance therapeutic efficacy of Daratumumab in MM patients. In the present study, we investigate the optimal NK cell platform for generating CD38low CD16F158V NK cells which can be administered as an "off-the-shelf"cell therapy product to target both CD38high and CD38low expressing MM patients in combination with Daratumumab. Methods: MM cell lines (n=5) (MM.1S, RPMI-8226, JJN3, H929, and U266) and NK cells (n=3) (primary expanded, NK-92, and KHYG1) were immunophenotyped for CD38 expression. CD16F158V coding m-RNA transcripts were synthesized using in-vitro transcription (IVT). CD16F158V expression was determined by flow cytometry over a period of 120 hours (n=5). 24-hours post electroporation, CD16F158V expressing KHYG1 cells were co-cultured with MM cell lines (n=4; RPMI-8226, JJN3, H929, and U266) either alone or in combination with Daratumumab in a 14-hour assay. Daratumumab induced NK cell fratricide and cytokine production (IFN-γ and TNF-α) were investigated at an E:T ratio of 1:1 in a 14-hour assay (n=3). CD38+CD138+ primary MM cells from newly diagnosed or relapsed-refractory MM patients were isolated by positive selection (n=5), and co-cultured with mock electroporated or CD16F158V m-RNA electroporated KHYG1 cells. CD16F158V KHYG1 were also co-cultured with primary MM cells from Daratumumab relapsed-refractory (RR) patients. Results: MM cell lines were classified as CD38hi (RPMI-8226, H929), and CD38lo (JJN3, U266) based on immunophenotyping (n=4). KHYG1 NK cell line had significantly lower CD38 expression as compared to primary expanded NK cells and NK-92 cell line (Figure 1a). KHYG1 electroporated with CD16F158V m-RNA expressed CD16 over a period of 120-hours post-transfection (n=5) (Figure 1b). CD16F158V KHYG1 in-combination with Daratumumab were significantly more cytotoxic towards both CD38hi and CD38lo MM cell lines as compared to CD16F158V KHYG1 alone at multiple E:T ratios (n=4) (Figure 1c, 1d). More importantly, Daratumumab had no significant effect on the viability of CD38low CD16F158V KHYG1. Moreover, CD16F158V KHYG1 in combination with Daratumumab produced significantly higher levels of IFN-γ (p=0.01) upon co-culture with CD38hi H929 cell line as compared to co-culture with mock KHYG1 and Daratumumab. The combination of CD16F158V KHYG1 with Daratumumab was also significantly more cytotoxic to primary MM cell ex vivo as compared to mock KHYG1 with Daratumumab at E:T ratio of 0.5:1 (p=0.01), 1:1 (p=0.005), 2.5:1 (p=0.003) and 5:1 (p=0.004) (Figure 1e). Preliminary data (n=2) also suggests that CD16F158V expressing KHYG1 can eliminate 15-17% of primary MM cells from Daratumumab RR patients ex vivo. Analysis of more Daratumumab RR samples are currently ongoing. Conclusions: Our study provides the proof-of-concept for combination therapy of Daratumumab with "off-the-shelf" CD38low NK cells transiently expressing CD16F158V for treatment of MM. Notably, this approach was effective against MM cell lines even with low CD38 expression (JJN3) and primary MM cells cultured ex vivo. Moreover, the enhanced cytokine production by CD16F158V KHYG1 cells has the potential to improve immunosurveillance and stimulate adaptive immune responses in vivo. Disclosures Sarkar: Onkimmune: Research Funding. Chauhan:Onkimmune: Research Funding. Stikvoort:Onkimmune: Research Funding. Mutis:Genmab: Research Funding; OnkImmune: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Research Funding; Celgene: Research Funding; Novartis: Research Funding. O'Dwyer:Abbvie: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; BMS: Research Funding; Glycomimetics: Research Funding; Onkimmune: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding.


2021 ◽  
Author(s):  
Pieter H. Anborgh ◽  
Igor Kolotilin ◽  
Nisha Owens ◽  
Abdulla Azzam Mahboob

Development of efficient therapies for COVID-19 is the focus of intense research. The cytokine release syndrome was underlined as a culprit for severe outcomes in COVID-19 patients. Interleukin-6 (IL-6) plays a crucial role in human immune responses and elevated IL-6 plasma levels have been associated with the exacerbated COVID-19 pathology. Since non-structural protein 10 (NSP10) of SARS-CoV-2 has been implicated in the induction of IL-6, we designed Peptide (P)1, containing sequences corresponding to amino acids 68-96 of NSP10, and examined its effect on cultured human cells. Treatment with P1 strongly increased IL-6 secretion by the lung cancer cell line NCI-H1792 and the breast cancer cell line MDA-MB-231 and revealed profound cytotoxic activity on Caco-2 colorectal adenocarcinoma cells. Treatment with P2, harbouring a mutation in the zinc knuckle motif of NSP10, caused no IL-6 induction and no cytotoxicity. Pre-treatment with plant-produced human anti-inflammatory cytokines IL-37b and IL-38 effectively mitigated the induction of IL-6 secretion. Our results suggest a role for the zinc knuckle motif of NSP10 in the onset of increased IL-6 plasma levels of COVID-19 patients and for IL-37b and IL-38 as therapeutics aimed at attenuating the cytokine release syndrome.


PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e87131 ◽  
Author(s):  
Dorit Lehmann ◽  
Jan Spanholtz ◽  
Caterina Sturtzel ◽  
Marleen Tordoir ◽  
Bernhard Schlechta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document