scholarly journals Ex Vivo Activity of Immunotherapeutic Approaches Targeting CD38 Against Daratumumab-Resistant Multiple Myeloma Patient Samples

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1848-1848
Author(s):  
Maria Karvouni ◽  
Heyue Zhou ◽  
Arnika Kathleen Wagner ◽  
Qiangzhong Ma ◽  
Alamdar H. Baloch ◽  
...  

Background: Multiple myeloma (MM) is a plasma cell malignancy that remains incurable. The identification of CD38, a transmembrane glycoprotein overexpressed on MM cells, led to the development of target-specific therapeutics such as the FDA approved monoclonal antibody (mAb) Daratumumab (DARA). Although a valuable treatment option for refractory/relapsed (R/R) MM patients, DARA has a limited response rate of below 50%, which highlights the clinical need for novel therapeutics. Aims: Aiming to further exploit the therapeutic potential of CD38 in the MM setting, immunotherapies based on the novel anti-CD38 mAb CD38A2 were tested. Methods: For the first approach, the CD38A2 mAb -that binds to a unique, distinct from DARA's, CD38 epitope- was conjugated with either the alkylating agent Duomycin (ADC-136) or the microtubulin binder Duostatin (ADC-129). The ADCs were compared to DARA, in cultures of primary MM cells from patients refractory to DARA treatment. In a second approach, a chimeric antigen receptor (CAR) consisting of the CD38A2 scFv and the intracellular domains of CD28 and CD3ζ was used to transduce primary T and NK cells from R/R MM patients. The functionality of the CAR-T and CAR-NK cells was assessed in cytotoxicity assays against autologous myeloma cells. Results: ADC-136 demonstrated the most potent cytotoxicity against the MM cells with an IC50 of 6pM at day 6 following a single dose treatment. ADC-129 showed cell killing with an IC50 of 30pM, while DARA did not exhibit appreciable cytotoxicity. Regarding the cell therapy approach, patients' T and NK cells were effectively transduced, showing a CD38A2-CAR expression ranging between 11-68%. In functional assays, CAR-T and CAR-NK cells were assayed against autologous myeloma cells, where they exhibited an increase in target cell cytotoxicity, compared to the untransduced cells. Summary/Conclusion: Altogether, our preliminary findings demonstrate that CD38 targeting using CD38A2-based immunotherapies could be a viable therapeutic approach in R/R MM patients previously exposed to DARA. Currently, an anti-CD38 CAR-T therapy based on CD38A2 is being evaluated in Phase 1 studies in R/R MM patients by Sorrento Therapeutics, Inc. Disclosures Zhou: Sorrento Therapeutics Inc: Employment, Equity Ownership. Ma:Sorrento Therapeutics Inc: Employment, Equity Ownership. Zhu:Sorrento Therapeutics Inc: Employment, Equity Ownership. Zhang:Sorrento Therapeutics Inc: Employment, Equity Ownership. Kaufmann:Sorrento Therapeutics, Inc.: Employment, Equity Ownership, Patents & Royalties.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 957-957 ◽  
Author(s):  
Sham Mailankody ◽  
Myo Htut ◽  
Kelvin P. Lee ◽  
William Bensinger ◽  
Todd Devries ◽  
...  

Abstract Introduction: B-cell maturation antigen (BCMA) is expressed on malignant plasma cells and is an attractive therapeutic target for multiple myeloma. BCMA CAR T-cells, antibody drug conjugates and bispecific T-cell engagers have demonstrated substantial preclinical and clinical activity to date. JCARH125 is a BCMA-targeting CAR T product containing a lentiviral CAR construct with a fully human scFv, optimized spacer, 4-1BB co-stimulatory and CD3z activation domains. The construct has shown minimal tonic signaling and lack of inhibition by soluble BCMA. JCARH125 is generated using a manufacturing process developed to optimize various aspects, including increased consistency of cell health, in the drug product. Methods: EVOLVE (NCT03430011) is a multi-center, phase 1/2 trial of JCARH125 in patients with relapsed and/or refractory multiple myeloma, who have received 3 or more prior regimens, which must include autologous stem cell transplant, a proteasome inhibitor, immunomodulatory drug and an anti-CD38 monoclonal antibody, unless not a candidate (i.e. contraindicated) to receive one or more of the above treatments. Lymphodepleting chemotherapy (LDC) consisting of 3 days of fludarabine (30 mg/m2) and cyclophosphamide (300 mg/m2) is given 2 to 7 days prior to JCARH125 infusion. A single dose of JCARH125 is given on day 1. Dose escalation is determined using the modified toxicity probability interval 2 (mTPI-2). A minimum of 3 patients are evaluated at each dose level (DL). The first 2 DLs evaluated were 50 and 150x 106 CAR+ T cells. Additional DLs are planned, followed by an expansion at the recommended phase 2 dose (RP2D). The primary objectives of the phase 1 portion are safety and identifying a RP2D. Results: At the time of the July 12, 2018 data analysis, 19 patients have been enrolled (i.e. apheresed) and 13 patients dosed with JCARH125. Only one patient was unable to receive JCARH125, due to sepsis after LDC, leading to death before JCARH125 administration. Eight patients were evaluable for safety (≥ 1 mo follow-up). (n = 5 DL1; n = 3 DL2). Three patients (all from DL1) were evaluable for confirmed response (≥ 2 mo follow-up) per International Myeloma Working Group (IMWG) criteria. Data reported here are from these initial 8 patients. Median follow-up is 5 weeks (range 4 - 13 weeks). Median age is 53 years (range 36 - 66) with a median time from diagnosis of 4 years (range 2 - 12). Patients had received a median of 10 prior regimens (range 4 - 15). Of these 8 patients, 4 (50%) were refractory (no response or progression within 60 days of last therapy) to bortezomib, carfilzomib, lenalidomide, pomalidomide and an anti-CD38 monoclonal antibody. Seven of 8 (88%) had prior autologous stem cell transplant and 4 of 8 (50%) have IMWG high risk cytogenetics. As of the data cut, no DLTs have been observed at the first 2 DLs. Cytokine release syndrome (CRS), all grade 1 or 2, was observed in 6 of 8 (75%) patients. Median onset of CRS was 9 days (range 4 - 10) with a median duration of 4.5 days (range 2 - 19 days). None of the patients with grade 2 CRS required vasopressor support and only 1 patient received tocilizumab. No patients had grade ≥ 3 CRS. Three of 8 (38%) patients experienced neurologic adverse events (AE). Two patients had grade 1 events, and 1 had a grade 3 event (lethargy), which resolved within 24 hours after receiving steroids. Onset of neurologic AEs was 9,11 and 12 days with a duration of 2, 3 and 1 days respectively. Notably, the patient who experienced grade 3 neurotoxicity (NT), developed secondary plasma cell leukemia (PCL) just prior to receiving LDC. All 8 patients have evidence of objective response (≥ MR), including the patient with secondary PCL. 3 patients, all treated at DL1 (50 x 106 CAR+ T-cells), have confirmed responses (1 PR, 2 sCR) with the remainder unconfirmed (1 CR, 2 VGPR, 1 PR, 1 MR). As of the data cut, no patients have progressed. Additional clinical and translational data on at least 30 patients and additional follow up of at least 4 months will be available at time of presentation. Conclusion: At initial lower dose levels, JCARH125 showed an acceptable safety profile with no DLTs reported thus far. Incidence of grade ≥ 3 NT was low and no grade ≥ 3 CRS has occurred with clear clinical activity. Although durability of response and response rate in a greater number of patients remain to be determined, early experience with JCARH125 support a favorable risk-benefit profile and rapid clinical development. Disclosures Mailankody: Takeda: Research Funding; Janssen: Research Funding; Physician Education Resource: Honoraria; Juno: Research Funding. Bensinger:celgene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; amgen: Speakers Bureau; Takeda: Speakers Bureau; Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Devries:Junot Therapeutics: Employment. Piasecki:Juno Therapeutics: Employment, Equity Ownership; Cascadian Therapeutics: Patents & Royalties; Amgen: Patents & Royalties. Ziyad:Juno Therapeutics: Employment, Equity Ownership. Blake:Celgene: Employment, Equity Ownership. Byon:Juno Therapeutics: Employment, Equity Ownership. Jakubowiak:Janssen: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria; Karyopharm: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Adaptive Biotechnologies: Consultancy, Honoraria; SkylineDx: Consultancy, Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4411-4411
Author(s):  
Ann Marie Rossi ◽  
Anna Bunin ◽  
Lawrence Iben ◽  
Matthew Welsch ◽  
Tanya Berbasova ◽  
...  

Background: Antibody recruiting molecules (ARM) are novel, immunotherapeutic bifunctional molecules composed of two active termini connected by a linker. One of the termini binds to a target molecule on a cancer cell. The other terminus, called universal antibody binding terminus (uABT), recruit all endogenous IgG antibodies independent of their antigen binding specificity. As a result, the target cell is "opsonized" by antibodies which then bring the immune effector cells to eliminate the target through various antibody-dependent destruction mechanisms. Kleo Pharmaceuticals has developed a series of CD38-ARM mlecules which target human CD38 highly expressed by multiple myeloma cells. CD38-ARM compounds are able to mediate ADCC without depleting CD38 expressing immune effector cells like existing therapeutic antibodies such as Daratumumab. Methods: Cyclized peptides containing natural and non-natural amino-acid that selectively bind to human CD38 were identified using Peptidream Flexizyme-based, cell free Peptide Discovery Translation System. These peptides were linked to uABT antibody binder via a linker to generate the final CD38-ARM molecules Binding of CD38-ARM was tested by ternary complex formation between CD38 expressing cells, CD38-ARM and labelled human IgG1. To confirm the activity of CD38-ARM, surrogate CD16a binding and signaling assays were performed using the NFAT Promega system. Antibody dependent cellular cytotoxicity (ADCC) assays using purified NK cells from multiple donors with polymorphism variants (V/V, F/F, and V/F) of CD16a were performed to confirm activity. Live cell imaging was utilized to assess the dynamics of NK-RAJI cell interactions mediated by CD38-ARM +/- IgG. We evaluated the ability of compounds to mediate complement dependent cytotoxicity (CDC). We tested the effect of CD38-ARM on human immune cell populations within PBMC and whole bone marrow (WBM) by flow cytometry. Lastly, ex vivo samples from WBM of MM patients at diagnosis or relapse were used to evaluate CD38-ARM anti-tumor activity as well as off-target effects, without the addition of external source of IgG, through multiparametric flow-cytometry (CD45, CD19, CD38, CD138, CD56, CD27, CD8, CD117). Results: The CD38-ARM were shown to have the ability to bind to CD38 with a 7nM affinity and to human IgG1 and IgG2 with affinity of 15nM and 11nM by SPR. Activity of KP compounds was observed in all assays except for CDC. In ternary assay, KP-6 had an apparent EC50 of 16nM while KP-7's EC50 was 6nM. Both KP-6 and 7 had comparable EC50s in the single digit nanamolar range in the NFAT activation assay induced by CD16a binding was confirmed using human IgG to induce, while Daratumumab had an apparent EC50 of 0.04nM. In the ADCC assay, both KP-6 & KP-7 had EC50s of 7 & 6nM respectively, while Daratumumab had an EC50 of 0.1nM. In addition, no NK cell depletion was observed when PBMC were treated with KP compounds, whereas a profound reduction in both percentages and absolute numbers in this cell subset was observed with Daratumumab treatment. Increasing dose of CD38-ARM (range 0.1uM- 25uM) were tested in ex vivo WBM samples from MM patients together with a negative control and Daratumumab. At concentrations of 10uM and 25uM, CD38-ARM induced a significant reduction of MM cells achieving results comparable to those of Daratumumab activity (p >0.05 in both cases), while sparing all other CD38+ normal cells such as NK, T lymphocytes, monocytes and granulocytes, which are always reduced in the presence of Daratumumab. Conclusions: CD38-ARMs are able to kill MM cells by ADCC without depleting CD38 expressing immune cells contrary to existing antibodies such as Daratumumab. CD38-ARMs do not activate complement, which might be involved in the infusion reaction seen with Daratumumab. Most importantly, CD38-ARMs kill multiple myeloma cells ex vivo in patient bone marrow samples as well as plasma cell leukemia in patient blood. Combined with the in vivo efficacy data presented elsewhere, this data establishes the therapeutic potential of CD38-ARM. They also represent the first demonstration of the ARM platform ability to generate therapeutic agents tailored to a specific indication, by varying target binding moiety of the molecule. Disclosures Rossi: Kleo pharmaceuticals: Employment, Equity Ownership. Bunin:Kleo pharmaceuticals: Employment, Equity Ownership. Iben:Kleo Pharmaceuticals: Employment, Equity Ownership. Welsch:Kleo pharmaceuticals: Employment, Equity Ownership. Berbasova:Kleo Pharmaceuticals: Employment, Equity Ownership. Riillo:Kleo Pharmaceuticals: Research Funding. Ohuchi:Peptidream Inc.: Employment. Alvarez:Kleo pharmaceuticals: Employment, Equity Ownership. Kawakami:Peptidream Inc.: Employment. Nagasawa:Peptidream Inc.: Employment. Spiegel:Kleo pharmaceuticals: Equity Ownership. Rastelli:Kleo pharmaceuticals: Employment, Equity Ownership.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3575-3575 ◽  
Author(s):  
William Bensinger ◽  
Sundar Jagannath ◽  
Pamela S. Becker ◽  
Kenneth C. Anderson ◽  
Edward A. Stadtmauer ◽  
...  

Abstract HCD122 is a novel, fully human, IgG1 antagonistic monoclonal antibody targeting the CD40 receptor. This antibody blocks CD40-mediated signaling and is a potent mediator of antibody-dependent cellular cytotoxicity (ADCC). Previous preclinical investigation confirmed expression of CD40 on myeloma cells in the majority of patients and reported antitumor activity of HCD122 against multiple myeloma cells ex vivo (Tai, Y et al. Cancer Res2005; 65(13): 5898–5906). This ongoing phase 1 study will determine the maximum tolerated dose of CHIR-12.12 in multiple myeloma patients (pts) who are relapsed or refractory after at least one prior therapy. Planned dose levels are 1, 3 and 10 mg/kg administered IV once weekly for 4 weeks. Each dose group will enroll 3–6 pts to evaluate safety, pharmacokinetics (PK) and clinical response. To date, 9 pts have been treated at 2 dose levels: 3 pts at 1 mg/kg and 6 pts at 3 mg/kg. Median patient age is 65 yrs (46–81 yrs); median number of prior therapies is 3 (2–12). No dose limiting toxicity (DLT) occurred at the 1mg/kg dose level. At 3 mg/kg, 1 DLT of grade 4 thrombocytopenia occurred in 1 pt. No other grade 3 and 4 lab abnormalities and adverse events have been reported. In 7 pts with available data, infusions were well tolerated, with easily managed grade 1–2 toxicities, primarily chills (5 pts), nausea (3 pts), pyrexia (2 pts), and arthralgia (2 pts) mainly reported during the first infusion. Preliminary PK analysis showed more than dose proportional - increase in Cmax and AUC at the 3 mg/kg dose level compared to the 1 mg/kg dose level. At the 3 mg/kg dose, antibody accumulation occurred week-to-week; the mean Cmax after the fourth infusion on Day 22 was 126.1 mg/mL(range 52 – 195 ug/mL) and HCD122 levels were measurable up to Day 57 and in one patient up to Day 99. One week after the last 3 mg/kg dose, trough levels ranged from 28 to 109 mg/mL. Of the 3 pts at 1 mg/kg, one showed stable disease (SD) for >23 weeks and two had progressive disease (PD) by week 5. Of the 6 pts at 3 mg/kg, one had partial response (PR) at week 9 and was confirmed at week 15, one had SD for > 5 weeks, and 4 had PD at week 5. One pt with PD terminated the study before final safety evaluation, and must be replaced before assessment of the 3mg/kg dose level is complete. Thus, in preliminary studies, HCD122 appears to be safe and well tolerated to date at doses of 1 mg/kg and 3 mg/kg weekly for 4 doses and shows promising anti-myeloma activity. Enrollment is continuing to determine MTD.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1959-1959 ◽  
Author(s):  
Jatin J Shah ◽  
Jeffrey A. Zonder ◽  
Adam Cohen ◽  
Donna Weber ◽  
Sheeba Thomas ◽  
...  

Abstract Abstract 1959 Background: Kinesin Spindle Protein (KSP) is required for cell cycle progression through mitosis. Inhibition of KSP induces mitotic arrest and cell death. ARRY-520 is a potent, selective KSP inhibitor. Cancers such as multiple myeloma (MM) which depend on the short-lived survival protein MCL-1 are highly sensitive to treatment with ARRY-520. ARRY-520 shows potent activity in preclinical MM models, providing a strong rationale for its clinical investigation in this disease. Methods: This Phase 1 study was designed to evaluate the safety and pharmacokinetics (PK) of ARRY-520 administered intravenously (IV) on Day 1 and Day 2 q 2 weeks without/with granulocyte-colony stimulating factor (G-CSF). Patients (pts) with relapsed/refractory (RR) MM with 2 prior lines of therapy (including both bortezomib and an immunomodulatory agent, unless ineligible for or refusing to receive this therapy) were eligible. Cohorts of at least 3 pts were enrolled in a classical 3 + 3 dose escalation design. Pts were treated for 2 cycles (4 weeks) to evaluate safety prior to dose escalation. Results: Twenty five pts have been treated to date, with a median age of 60 years (range 44–79) and a median of 5 prior regimens (range 2–16). All pts received prior bortezomib or carfilzomib, 21 pts received prior lenalidomide, 17 pts prior thalidomide, and 18 pts had a prior stem cell transplant. Pts received ARRY-520 without G-CSF at 1 mg/m2/day (n = 3), and at 1.25 mg/m2/day (n = 7, 6 evaluable). A dose-limiting toxicity (DLT) of Grade 4 neutropenia was observed at 1.25 mg/m2/day, and this was considered the maximum tolerated dose (MTD) without G-CSF. As neutropenia was the DLT, dose escalation with prophylactic G-CSF support was initiated, at doses of 1.5 mg/m2/day (n = 7, 6 evaluable), 2.0 mg/m2/day (n = 6) and 2.25 mg/m2/day (n = 2) with G-CSF. Both the 2.0 mg/m2/day and 2.25 mg/m2/day dose levels were determined to be non-tolerated, with DLTs of febrile neutropenia (FN) (2 pts at 2.0 mg/m2/day and both pts at 2.25 mg/m2/day) and Grade 3 mucositis (both pts at 2.25 mg/m2/day). One out of 6 evaluable pts at 1.5 mg/m2/day also developed a DLT of FN. In an attempt to optimize the Phase 2 dose, an intermediate dose level of 1.75 mg/m2/day with G-CSF is currently being evaluated. The most commonly reported treatment-related adverse events (AEs) include those observed with other KSP inhibitors, such as hematological AEs (thrombocytopenia, neutropenia, anemia, leukopenia), fatigue, mucositis and other gastro-intestinal AEs. Pts displayed linear PK, a low clearance and a moderate volume of distribution, with moderate-to-high inter-individual variability in PK parameters. The median terminal elimination half life is 65 hours. The preliminary efficacy signal as a single agent is encouraging with 2 partial responses (PR) observed to date per IMWG and EBMT criteria in a heavily pretreated population (23 evaluable pts). A bortezomib-refractory pt with 8 prior lines of therapy, including a tandem transplant, treated at 1 mg/m2/day of ARRY-520 obtained a PR after Cycle 6, with urine protein and kappa light chain levels continuing to decline over time. He remains on-study after 15 months of ARRY-520 treatment. A pt with 2 prior lines of therapy, including prior carfilzomib, has obtained a PR after Cycle 8 at 2 mg/m2/day of ARRY-520, and she is currently ongoing after 4.5 months on therapy. Fifteen pts had a best response of stable disease (SD), including 1 pt with a thus far unconfirmed minimal response, and 6 had progressive disease. A total of 10 pts (43%) achieved a PR or SD lasting > 12 weeks. Several additional pts have shown other evidence of clinical activity, with decrease in paraproteins, increase in hemoglobin levels and regression of plasmacytomas. The median number of cycles is 4 (range 1–28+). Treatment activity has not correlated with any baseline characteristics or disease parameters to date. Conclusions: : The selective KSP inhibitor ARRY-520 has been well tolerated, and shows promising signs of single agent clinical activity in heavily pretreated pts with RR MM. Prophylactic G-CSF has enabled higher doses to be tolerated. No cardiovascular or liver enzyme toxicity has been reported. Enrollment is ongoing at 1.75 mg/m2/day with G-CSF support, and a planned Phase 2 part of the study will be initiated as soon as the MTD is determined. Complete Phase 1 data will be disclosed at the time of the meeting. Disclosures: Shah: Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Millennium: Research Funding. Off Label Use: Revlimid (lenalidomide) in combination with dexamethasone is indicated for the treatment of multiple myeloma patients who have received at least one prior therapy. Zonder:Millennium: Consultancy, Myeloma and Amyloidosis Patient Day Symposium – Corporate support from multiple sponsors for a one-day educational event, Research Funding; Celgene:; Novartis:; Proteolix: . Weber:novartis-unpaid consultant: Consultancy; Merck- unpaid consultant: Consultancy; celgene- none for at least 2 years: Honoraria; millenium-none for 2 years: Honoraria; celgene, Millenium, Merck: Research Funding. Wang:Celgene: Research Funding; Onyx: Research Funding; Millenium: Research Funding; Novartis: Research Funding. Kaufman:Celgene: Consultancy, Honoraria, Research Funding; Millenium: Consultancy, Honoraria; Merck: Research Funding; Genzyme: Consultancy. Walker:Array Biopharma: Employment, Equity Ownership. Freeman:Array Biopharma: Employment, Equity Ownership. Rush:Array Biopharma: Employment, Equity Ownership. Ptaszynski:Array Biopharma: Consultancy. Lonial:Millennium, Celgene, Bristol-Myers Squibb, Novartis, Onyx: Advisory Board, Consultancy; Millennium, Celgene, Novartis, Onyx, Bristol-Myers Squibb: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2463-2463 ◽  
Author(s):  
Lijun Wu ◽  
Ara M. Aslanian ◽  
Julie F. Liu ◽  
Kristine Hogan ◽  
Roger Tung

Abstract Abstract 2463 Lenalidomide (Revlimid®) is an immunomodulatory drug (IMiD) currently approved for the treatment of 5q- myelodysplastic syndrome and multiple myeloma. The clinical efficacy of lenalidomide is thought to be related in part to enhanced T-cell co-stimulation and NK-cell activation via augmented IL-2 and IFN-γ production (Bartlett et al., 2004; Corral and Kaplan, 1999). Lenalidomide also inhibits TNF-α production in peripheral blood mononuclear cells (PBMCs) and whole blood, which may further contribute to its anti-tumor activity (Mueller et al., 1999). In addition to immunomodulatory effects, lenalidomide directly induces growth arrest and apoptosis in multiple myeloma cells, which is also recognized as a key mechanism of clinical efficacy (Mitsiades, 2002; Bartlett et al., 2004). IMiD-class compounds, including thalidomide, lenalidomide, and pomalidomide, have been developed as racemic mixtures of S- and R-enantiomers. The isolated enantiomers of thalidomide are known to have distinct biological activities. For example, the well-documented sedative effects of thalidomide are correlated with the R-enantiomer (Eriksson et al., 2000), whereas S-thalidomide exhibits enhanced potency for TNF-α inhibition and IL-2 induction compared to R-thalidomide (Mueller et al., 1999; Moreira et al., 2003; Macor, 2007). Due to facile in vivo conversion, isolated S- enantiomers of IMiDs have not been developed clinically. To our knowledge, it has not been previously reported whether lenalidomide has enantiospecific immunomodulatory, anti-proliferative, or toxicological properties. Given the therapeutic importance of lenalidomide, we explored a number of deuterium-substituted analogs of lenalidomide, either as racemic mixtures or as isolated S- and R-enantiomers, and studied them in several in vitro pharmacological assays. We found that in each case tested, deuterated racemic lenalidomide analogs were indistinguishable from non-deuterated lenalidomide across all the assays employed, including IL-2 induction in anti-CD3-stimulated PBMC, TNF-α inhibition in LPS-stimulated whole blood, and inhibition of proliferation of MM.1S human multiple myeloma cells. In contrast to deuterated racemic lenalidomide, CTP-221, an optimized deuterated S-lenalidomide analog, exhibited enhanced potency compared to racemic lenalidomide for IL-2 induction (2.7-fold), TNF-α inhibition (3.7-fold) and anti-proliferative (2.4-fold) activities in vitro. Interestingly, these enhancements in potency are greater than the maximal 2-fold enhancement one could expect from assessing an isolated active enantiomer in comparison to its racemate. These greater-than-expected enhancements in potency were consistently observed across all the assays comparing CTP-221 to lenalidomide, suggesting that deuterium substitution had additional effect(s) that drive increased potency. Furthermore, CTP-221 was significantly more potent than similarly deuterated R-lenalidomide in these assays (between 9.0 and 19.8-fold), demonstrating that the clinically relevant pharmacological activities of lenalidomide are primarily contained within the S-enantiomer. Finally, we found that CTP-221 was consistently more potent (1.2–2.0-fold) than non-deuterated S-lenalidomide. Taken together, these in vitro data demonstrate that deuterated racemic lenalidomide does not offer apparent advantages versus lenalidomide. However, the deuterated S-lenalidomide analog CTP-221 is significantly more potent than lenalidomide in key biological activities believed important for clinical efficacy. We plan to explore the toxicological properties of CTP-221 to assess its therapeutic window relative to lenalidomide. Disclosures: Wu: Concert Pharmaceuticals, Inc.: Employment, Equity Ownership. Aslanian:Concert Pharmaceuticals, Inc.: Employment, Equity Ownership. Liu:Concert Pharmaceuticals, Inc.: Employment, Equity Ownership. Hogan:Concert Pharmaceuticals, Inc.: Employment, Equity Ownership. Tung:Concert Pharmaceuticals, Inc.: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 580-580
Author(s):  
Mark Wunderlich ◽  
Mahesh Shrestha ◽  
Lin Kang ◽  
Eric Law ◽  
Vladimir Jankovic ◽  
...  

Abstract Abstract 580 Generating a large number of pure, functional immune cells that can be used in human patients has been a major challenge for NK cell-based immunotherapy. We have successfully established a cultivation method to generate human NK cells from CD34+ cells isolated from donor-matched cord blood and human placental derived stem cells, which were obtained from full-term human placenta. This cultivation method is feeder-free, based on progenitor expansion followed by NK differentiation supported by cytokines including thrombopoietin, stem cell factor, Flt3 ligand, IL-7, IL-15 and IL-2. A graded progression from CD34+ hematopoietic progenitor cells (HSC) to committed NK progenitor cells ultimately results in ∼90% CD3-CD56+ phenotype and is associated with an average 10,000-fold expansion achieved over 35 days. The resulting cells are CD16- and express low level of KIRs, indicating an immature NK cell phenotype, but show active in vitro cytotoxicity against a broad range of tumor cell line targets. The in vivo persistence, maturation and functional activity of HSC-derived NK cells was assessed in NSG mice engineered to express the human cytokines SCF, GM-CSF and IL-3 (NSGS mice). Human IL-2 or IL-15 was injected intraperitoneally three times per week to test the effect of cytokine supplementation on the in vivo transferred NK cells. The presence and detailed immunophenotype of NK cells was assessed in peripheral blood (PB), bone marrow (BM), spleen and liver samples at 7-day intervals up to 28 days post-transfer. Without cytokine supplementation, very few NK cells were detectable at any time-point. Administration of IL-2 resulted in a detectable but modest enhancement of human NK cell persistence. The effect of IL-15 supplementation was significantly greater, leading to the robust persistence of transferred NK cells in circulation, and likely specific homing and expansion in the liver of recipient mice. The discrete response to IL-15 versus IL-2, as well as the preferential accumulation in the liver have not been previously described following adoptive transfer of mature NK cells, and may be unique for the HSC-derived immature NK cell product. Following the in vivo transfer, a significant fraction of human CD56+ cells expressed CD16 and KIRs indicating full physiologic NK differentiation, which appears to be a unique potential of HSC-derived cells. Consistent with this, human CD56+ cells isolated ex vivo efficiently killed K562 targets in in vitro cytotoxicity assays. In contrast to PB, spleen and liver, BM contained a substantial portion of human cells that were CD56/CD16 double negative (DN) but positive for CD244 and CD117, indicating a residual progenitor function in the CD56- fraction of the CD34+ derived cell product. The BM engrafting population was higher in NK cultures at earlier stages of expansion, but was preserved in the day 35- cultured product. The frequency of these cells in the BM increased over time, and showed continued cycling based on in vivo BrdU labeling 28 days post-transfer, suggesting a significant progenitor potential in vivo. Interestingly, DN cells isolated from BM could be efficiently differentiated ex vivo to mature CD56+CD16+ NK cells with in vitro cytotoxic activity against K562. We speculate that under the optimal in vivo conditions these BM engrafting cells may provide a progenitor population to produce a mature NK cell pool in humans, and therefore could contribute to the therapeutic potential of the HSC-derived NK cell product. The in vivo activity of HSC-derived NK cells was further explored using a genetically engineered human AML xenograft model of minimal residual disease (MRD) and initial data indicates significant suppression of AML relapse in animals receiving NK cells following chemotherapy. Collectively, our data demonstrate the utility of humanized mice and in vivo xenograft models in characterizing the biodistribution, persistence, differentiation and functional assessment of human HSC-derived cell therapy products, and characterize the potential of HSC-derived NK cells to be developed as an effective off-the-shelf product for use in adoptive cell therapy approaches in AML. Disclosures: Wunderlich: Celgene Cellular Therapeutics: Research Funding. Shrestha:C: Research Funding. Kang:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Law:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Jankovic:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Zhang:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Herzberg:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Abbot:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Hariri:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Mulloy:Celgene Cellular Therapeutics: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3807-3807
Author(s):  
Corey S Cutler ◽  
Daniel Shoemaker ◽  
Peter Westervelt ◽  
Daniel R. Couriel ◽  
Sumithra Vasu ◽  
...  

Abstract Umbilical cord blood (UCB) offers many potential advantages as a source of hematopoietic stem cells (HSCs) for allogeneic transplantation, including ease of collection, rapid availability, flexibility of HLA-matching, lower rates of GvHD and potentially lower relapse rates. However, the low HSC content of UCB compared to other graft sources results in a prolonged time to engraftment, and higher rates of graft failure and early mortality. Pulse ex vivo exposure of HSCs to 16,16-dimethyl PGE2 (FT1050) has been demonstrated to enhance HSC engraftment potential, which could benefit clinical UCB transplant. FT1050 modulation promotes multiple mechanisms, including increased proliferation, reduced apoptosis, and improved migration and homing [North 2007&2009; Hoggatt 2009]. Improved HSC homing is mediated by induction of CXCR4 gene expression leading to increased cell surface CXCR4. Further optimization of the UCB modulation process demonstrated that incubation with 10µM FT1050 for 2 hrs at 37C resulted in a maximal biological response of the FT1050-UCB (ProHema®). A Phase 1 trial was performed to evaluate the safety of FT1050-UCB paired with an unmanipulated UCB unit in reduced-intensity double UCBT (dUCBT) [Cutler 2013]. We observed durable, multi-lineage engraftment of FT1050-UCB with acceptable safety. Earlier neutrophil engraftment was observed relative to historical controls (median 17.5 vs. 21 days (historical control), p=0.045), coupled with preferential engraftment of the FT1050-UCB unit in 10 of 12 subjects. A Phase 2 multi-center clinical trial of FT1050-UCB in adult patients undergoing dUCBT for hematologic malignancies was then initiated. Subjects are randomized 2:1 to FT1050-UCB-containing vs. standard dUCBT after high-dose conditioning. The primary endpoint is a categorical analysis of neutrophil engraftment using a pre-specified control median. Data on the initial 11 subjects, of which 8 were randomized to receive FT1050-UCB, continue to demonstrate acceptable safety with adverse events attributed to FT1050-UCB limited primarily to common infusion-related side effects. Of the 8 FT1050-UCB subjects, 1 died prior to neutrophil engraftment, with the remaining 7 subjects engrafting at a median of 28 days vs. 31 days for the 3 control subjects. With median overall follow-up of 16.1 months, 4 of 8 subjects on the FT1050-UCB arm are alive with a median survival not reached (> 11.0 months). 1 of 3 control subjects is alive with median survival of 6.0 months. During the clinical translation process, the media used during FT1050 modulation of UCB was identified as a key variable. Standard UCB washing media, consisting of a nutrient-free saline solution of low molecular weight dextran and human serum albumin (LMD/HSA), is used clinically to stabilize fragile cells post-thaw by reducing lysis. This media was used in the Phase 1 trial and to initiate Phase 2. Early during the Phase 2 trial, we identified a novel cell-stabilizing nutrient-rich formulation (NRM), containing glucose, amino acids and other HSC-supporting nutrients that promoted full FT1050 modulation of UCB and increased cell viability. The expression of key FT1050-pathway genes was significantly higher with NRM compared to intermediate levels observed with LMD/HSA. Modulation of human CD34+ (hCD34+) cells with FT1050 in NRM led to an 8-fold increase over LMD/HSA in induced CXCR4 gene expression (20-fold total), which translated to significantly increased surface CXCR4 protein. In vivo homing models demonstrated that UCB CD34+ cells modulated with FT1050 in NRM resulted in a 2.2-fold homing increase relative to vehicle (p < 0.001) compared to a 1.6-fold increase with LMD/HSA (p = 0.002), with a significant difference between the two media conditions (p = 0.04). A xenotransplantation study in NSG mice with hCD34+ cells modulated with FT1050 in either NRM or LMD/HSA demonstrated a 2-fold increase in circulating hCD45+ cells 12-weeks post-transplant with NRM (p = 0.007; unpaired t-test). These findings supported the incorporation of NRM into the FT1050-UCB manufacturing process in order to further improve its clinical engraftment potential. Enrollment of a 60-patient Phase 2 trial has been initiated that incorporates this manufacturing change. Disclosures Shoemaker: Fate Therapeutics: Employment, Equity Ownership. Rezner:Fate Therapeutics: Employment. Guerrettaz:Fate Therapeutics: Employment. Robbins:Fate Therapeutics: Employment. Medcalf:Fate Therapeutics: Employment. Wolchko:Fate Therapeutics: Employment, Equity Ownership. Ferraro:Fate Therapeutics: Employment. Multani:Fate Therapeutics: Employment.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4730-4730 ◽  
Author(s):  
Jeffrey Matous ◽  
David S Siegel ◽  
Sagar Lonial ◽  
R. Donald Harvey ◽  
Claudia Kasserra ◽  
...  

Abstract Background: Pomalidomide (POM) is indicated for patients (pts) with relapsed or refractory multiple myeloma (RRMM) who received ≥ 2 prior therapies including lenalidomide and bortezomib and demonstrated progression on or within 60 days of completion of the last treatment (Tx). Renal impairment (RI) is a common comorbidity of multiple myeloma (MM) occurring in 20% to 40% of pts (Eleutherakis-Papaikovou, et al. Leuk Lymphom, 2007; Knudsen, et al., Eur J Haematol, 2000). POM is extensively metabolized, with < 5% eliminated renally as the parent drug (Hoffmann, et al., Cancer Chemother Pharmacol, 2013). POM in combination with low-dose dexamethasone (LoDEX) has shown efficacy in pts with RRMM and moderate RI (creatinine clearance [CrCl] < 30-44 mL/min), but pts with severe RI (CrCl < 30 mL/min; serum creatinine> 3 mg/dL) were excluded from most trials (Siegel, et al., Blood. 2012; Weisel, et al., J Clin Oncol, 2013). MM-008 is a multicenter, open-label, phase 1 study assessing the pharmacokinetics (PK) and safety of POM + LoDEX in pts with RRMM and normal or severely impaired renal function. Methods: Pts withRRMM (≥ 1 prior Tx) and normal kidney function or mild RI (creatinine clearance [CrCl] ≥ 60 mL/min; Cohort A—control arm), severe RI (CrCl < 30 mL/min) not requiring dialysis (Cohort B), and severe RI requiring dialysis (Cohort C) were eligible. Cohort A received POM 4 mg, and Cohort B received POM 2 or 4 mg on days 1-21 of a 28-day cycle, following a 3 + 3 dose-escalation design. Cohort B results informed the 4 mg dosing of Cohort C. All cohorts received DEX 40 mg (20 mg for pts aged > 75 yrs) on days 1, 8, 15, and 22. Tx continued until progression or unacceptable toxicity. Dose-limiting toxicities (DLTs) were defined as any of the following: grade (Gr) 4 neutropenia, febrile neutropenia, Gr 4 thrombocytopenia that is a ≥ 30% decrease in platelets from baseline and requires > 1 platelet transfusion, Gr 3 thrombocytopenia with significant bleeding (requiring hospitalization and/or platelet transfusion), Gr 4 infection, or ≥ Gr 3 other non-hematologic toxicity related to POM. Serial plasma samples were analyzed to generate PK parameters. Updated PK and AE data for all cohorts will be presented. Results: As of July 17, 2014, updated data for 16 treated pts were available (8 in Cohort A; 3 in Cohort B at 2 mg; 4 in Cohort B at 4 mg; and 1 in Cohort C). Median age was 67 yrs (range, 46-76 yrs), 56% were male, all had Eastern Cooperative Oncology Group performance status 0 or 1, and a median time from diagnosis of 3.8 yrs (range, 0.6-12.5). No DLTs in cycle 1 were reported for any cohort. The most common Gr ≥ 3 adverse events (AEs) were neutropenia, anemia, infection, and fatigue (Table). Median relative dose intensity was consistent across cohorts: 90% (Cohort A), 90% (Cohort B; 2 mg), 100% (Cohort B; 4 mg) and 100% (Cohort C). Three pts discontinued due to AEs (2 in Cohort A and 1 in Cohort B 4 mg); no deaths have occurred during treatment phase. Conclusion: MM-008 is an ongoing trial prospectively evaluating the PK and safety of POM + LoDEX in pts with RRMM and severe RI. Preliminary PK data support mean dose-normalized exposure in pts with RRMM being similar between those with severe RI and those with no or mild RI at the clinical dose of 4 mg; early tolerability data (after one cycle) are encouraging. Table Cohort A(n = 8) Cohort B(n = 3) Cohort B(n = 4) Cohort C(n = 1) Cohort Characteristics POM dose 4 mg 2 mg 4 mg 4 mg CrCl (mL/min) ≥ 60 mL/min < 30 mL/min without dialysis < 30 mL/min without dialysis < 30 mL/min with dialysis Safety Dose-limiting toxicities (n) N/A 0 0 0 Grade 3/4 AEs (n) Neutropenia 4 2 1 0 Anemia 3 1 2 0 Infection 3 2 0 0 Fatigue 2 0 0 0 N/A: Not applicable (4 mg POM is approved dose for population) Disclosures Matous: Celgene Corp: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Siegel:Celgene Corp: Honoraria, Speakers Bureau; Onyx: Honoraria, Speakers Bureau; Millennium: Honoraria, Speakers Bureau. Lonial:Onyx: Consultancy; BMS: Consultancy; Novartis: Consultancy; Celgene: Consultancy; Millennium: Consultancy. Harvey:Celgene Corp: Research Funding. Kasserra:Celgene Corp: Employment, Equity Ownership. Li:Celgene Corp: Employment, Equity Ownership. Chen:Celgene Corp: Employment. Doerr:Celgene Corporation: Employment. Sternas:Celgene Corp: Employment, Equity Ownership. Zaki:Celgene : Employment, Equity Ownership. Jacques:Celgene Corp: Employment, Equity Ownership. Shah:Celgene Corp: Consultancy, Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1802-1802 ◽  
Author(s):  
Andrew L MacKinnon ◽  
Mark Bennett ◽  
Matt Gross ◽  
Julie Janes ◽  
Weiqin Li ◽  
...  

Abstract Introduction Glutaminase is a mitochondrial enzyme that converts glutamine to glutamate to support several metabolic processes including amino acid and nucleotide synthesis, maintenance of cellular redox homeostasis, and the replacement of TCA cycle intermediates. Selective glutaminase inhibitors BPTES and CB-839 have anti-proliferative activity in several pre-clinical cancer models including breast, pancreatic, lung, renal, brain, leukemia, and lymphoma. Across a panel of twenty-nine multiple myeloma cell lines, we found that glutaminase inhibition with CB-839 caused tumor cell death or growth inhibition in only a subset of cell lines. To identify biomarkers that predict sensitivity to CB-839 in multiple myeloma cells, we profiled cellular metabolites, mRNA transcripts, and signaling pathways in eight multiple myeloma cell (four CB-839-sensitive and four CB-839-resistant). Results Proteomic analysis showed that CB-839 treatment suppressed the activity of the amino-acid sensing kinase mTORC1 in CB-839-sensitive cells, leading to down regulation of protein synthesis and expression of metabolic genes. Analysis of steady-state levels of intra-cellular metabolites revealed that CB-839-sensitive cells had more profound decreases in nucleotide levels and less pronounced increases in essential amino acids upon CB-839 treatment compared to CB-839-resistant cells. This suggests that the metabolic response to glutaminase inhibition is fundamentally different in sensitive versus resistant multiple myeloma cell lines. Consistent with the in vitro data, in a xenograft model with the CB-839-sensitive cell line RPMI8226, CB-839 treatment produced a 71% reduction in tumor growth that was associated with reduced levels of intratumoral nucleotides and no changes in the levels of essential amino acids. We next explored protein biomarkers that predict resistance to CB-839 and found that pyruvate carboxylase (PC) expression strongly correlated with resistance. siRNA-mediated knockdown of PC reduced TCA cycle activity and sensitized cells to CB-839 treatment, suggesting that PC can rescue cells from glutaminase inhibition by supporting anapleurotic utilization of glucose. This hypothesis was further substantiated by the observation that treatment of CB-839-resistant cells with the AKT inhibitor MK2206 led to a decrease in glucose utilization, and when combined with CB-839, produced a significant decrease in TCA cycle activity and a profound synergistic anti-proliferative response. Conclusion Multiple myeloma cells show varying anti-proliferative responses to glutaminase inhibition by CB-839. CB-839 treatment inhibits mTORC1 pathway signaling and causes decreases in nucleotides in sensitive multiple myeloma cells. Multiple myeloma cells that are resistant to glutaminase inhibition have high expression of PC, which may allow these cells to utilize glucose instead of glutamine to resupply TCA cycle intermediates. Knockdown of PC or treatment with an AKT inhibitor causes cells to utilize less glucose and sensitizes resistant cells to glutaminase inhibition with CB-839. CB-839 is currently being evaluated in Phase 1 clinical trials for the treatment of various solid and hematological cancers including multiple myeloma. We are exploring the utility of PC and mTORC1 pathway signaling biomarkers to identify multiple myeloma patients that may respond to CB-839 treatment. Disclosures MacKinnon: Calithera Biosciences: Employment, Equity Ownership. Bennett:Calithera Biosciences: Employment, Equity Ownership. Gross:Calithera Biosciences: Employment, Equity Ownership. Janes:Calithera Biosciences: Employment, Equity Ownership. Li:Calithera Biosciences: Employment, Equity Ownership. Rodriquez:Calithera Biosciences: Employment, Equity Ownership. Wang:Calithera Biosciences: Employment, Equity Ownership. Zhang:Calithera Biosciences: Employment, Equity Ownership. Parlati:Calithera Biosciences: Employment, Equity Ownership.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1921-1921 ◽  
Author(s):  
Henia Dar ◽  
Daniel Henderson ◽  
Zinkal Padalia ◽  
Ashley Porras ◽  
Dakai Mu ◽  
...  

Abstract Autologous CAR-T cells targeting BCMA have induced robust and durable responses in patients with relapsed/refractory multiple myeloma. However, autologous cell therapies face several challenges which will likely limit the number of patients that will have access to these therapies. These limitations include manufacturing failure rates, wait time and supply constraints in addition to other factors such as reimbursement. Allogeneic CAR-T cells can potentially overcome these access challenges, and may have several other advantages over autologous therapies. Allogeneic CAR-T cells are derived from robust healthy donor T cells through a batch manufacturing process, which may result in a highly consistent product with greater potency and enable better safety management. Here we show further development and preclinical data for CTX120, an allogeneic "off the shelf" CAR-T cell targeting BCMA. CTX120 is produced using the CRISPR/Cas9 system to eliminate TCR and MHC class I, coupled with specific insertion of the CAR at the TRAC locus. CTX120 shows consistent and high percent CAR expression from this controlled insertion and exhibits target-specific cytotoxicity and cytokine secretion in response to BCMA positive cell lines. CTX120 CAR-T cells retain their cytotoxic capacity over multiple in vitro re-challenges, demonstrating durable potency and lack of exhaustion. In mouse models of multiple myeloma, CTX120 showed typical CAR-T persistence and eliminated tumors completely, resulting in long-term survival as compared to untreated animals. These data support the ongoing development of CTX120 for treatment of patients with multiple myeloma and further demonstrate the potential for our CRISPR/Cas9 engineered allogeneic CAR-T platform to generate potent CAR-T cells targeting different tumor antigens. Disclosures Dar: CRISPR Therapeutics: Employment, Equity Ownership. Henderson:CRISPR Therapeutics: Employment, Equity Ownership. Padalia:CRISPR Therapeutics: Employment, Equity Ownership. Porras:CRISPR Therapeutics: Employment, Equity Ownership. Mu:CRISPR Therapeutics: Employment, Equity Ownership. Kyungah:CRISPR Therapeutics: Employment, Equity Ownership. Police:CRISPR Therapeutics: Employment, Equity Ownership. Kalaitzidis:CRISPR Therapeutics: Employment, Equity Ownership. Terrett:CRISPR Therapeutics: Employment, Equity Ownership. Sagert:CRISPR Therapeutics: Employment, Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document