scholarly journals Methodology to Evaluate Fatigue Damage of High-Speed Train Welded Bogie Frames Based on On-Track Dynamic Stress Test Data

2019 ◽  
Vol 32 (1) ◽  
Author(s):  
Guangxue Yang ◽  
Meng Wang ◽  
Qiang Li ◽  
Ran Ding
2008 ◽  
Vol 44-46 ◽  
pp. 733-738 ◽  
Author(s):  
Bing Rong Miao ◽  
Wei Hua Zhang ◽  
Shou Ne Xiao ◽  
Ding Chang Jin ◽  
Yong Xiang Zhao

Railway vehicle structure fatigue life consumption monitoring can be used to determine fatigue damage by directly or indirectly monitoring the loads placed on critical vehicle components susceptible to failure from fatigue damage. The sample locomotive carbody structure was used for this study. Firstly, the hybrid fatigue analysis method was used with Multi-Body System (MBS) simulation and Finite Element Method (FEM) for evaluating the carbody structure dynamic stress histories. Secondly, the standard fatigue time domain method was used in fatigue analysis software FE-FATIGUE and MATLAB WAFO (Wave Analysis for Fatigue and Oceanography) tools. And carbody structure fatigue life and fatigue damage were predicted. Finally, and carbody structure dynamic stress experimental data was taken from this locomotive running between Kunming-Weishe for this analysis. The data was used to validate the simulation results based on hybrid method. The analysis results show that the hybrid method prediction error is approximately 30.7%. It also illustrates that the fatigue life and durability of the locomotive can be predicted with this hybrid method. The results of this study can be modified to be representative of the railway vehicle dynamic stress test.


2011 ◽  
Vol 368-373 ◽  
pp. 2575-2580 ◽  
Author(s):  
Long Long Fu ◽  
Quan Mei Gong ◽  
Yang Wang

To investigate the dynamic transfer characteristics of low geosynthetic-reinforced embankments supported by CFG piles under high-speed train load, a numerical study has been conducted through dynamic finite element method on basis of the dynamic field test on a cross-section of Beijing-Shanghai high-speed railway. The comparative analysis on results of numerical study and field test indicated the distribution characteristics of vertical dynamic stress induced by high-speed train load in subgrade soil under railway line. The numerical results also suggested a high stress area in subgrade where vertical dynamic stress is over 1kPa. Conclusions of this work can provide reference for both design and estimation of long-term settlement of low geosynthetic-reinforced embankments supported by CFG piles for high-speed railway.


Wear ◽  
2021 ◽  
pp. 203993
Author(s):  
Yuanchen Zeng ◽  
Dongli Song ◽  
Weihua Zhang ◽  
Junhai Hu ◽  
Bin Zhou ◽  
...  

2013 ◽  
Vol 779-780 ◽  
pp. 731-738 ◽  
Author(s):  
Ke Xin Zhang ◽  
Jian Wei Yao ◽  
Ze Ping Zhao

The principal aim of this paper is to determine the reasonable design parameters of high-speed railway vibration attenuation. The orthogonal test method is used to design the test of ground vibration induced by high-speed train. Four main factors that impact the maximum ground vertical vibration level are selected, and different values are given to each factor, so 8 groups of combinations can be obtained by using orthogonal test technique. Each group test data of the maximum ground vertical vibration level can be obtained by conducting vehicle testing on-track. In this paper, the primary and secondary factors that impact the maximum ground vertical vibration level are determined by range analysis. Moreover, the neural network theory is used to establish a model of the ground vertical vibration level, and this model can be trained and verified by the test data. The impact factors can be predicted by the method of combining orthogonal test and neural network concerning the specified vibration limit, and the value of maximum ground vertical vibration level with the predicted factors meets the requirement of accuracy. The conclusions provide a valuable reference to the vibration attenuation design of the high-speed railway.


2020 ◽  
Vol 56 (10) ◽  
pp. 163
Author(s):  
ZHANG Yayu ◽  
SUN Shouguang ◽  
YANG Guangxue ◽  
LI Guangquan

2022 ◽  
Vol 12 (2) ◽  
pp. 712
Author(s):  
Wangang Zhu ◽  
Wei Sun ◽  
Hao Wu

The vibration data of the gearbox on a high-speed train was measured, and the vibration characteristics were analyzed in this paper. The dynamic stress of the gearbox under the internal and external excitation was examined by a railway vehicle dynamic model with a flexible gearbox and a flexible wheelset. The ideal 20th polygonal wear was considered, and dynamic stresses of the gearbox under different polygonal wear amplitudes were calculated. The gear transmission model was established to study the dynamic stress of the gearbox under the influence of the time-varying stiffness of the gear meshing. Based on the rigid–flexible coupling model, and considering the influence of wheel polygonization, gear meshing time-varying stiffness, and wheelset elastic deformation, the dynamic stress of the gearbox was investigated with consideration of the measured polygonal wear and measured rail excitation. The results show that the dynamic stress of the gearbox is dominated by the wheel polygonization. Moreover, not only the wheel polygonization excites the resonance of the gearbox, but also the flexible deformation of the wheelset leads to the deformation of the gearbox, which also increases the dynamic stress of the gearbox. Within the resonant bandwidth of the frequency, the amplitude of the dynamic stresses in the gearbox will increase considerably compared with the normal case.


2018 ◽  
Vol 89 ◽  
pp. 222-241 ◽  
Author(s):  
Yaohui Lu ◽  
Penglin Xiang ◽  
P. Dong ◽  
Xing Zhang ◽  
Jing Zeng

Measurement ◽  
2020 ◽  
Vol 166 ◽  
pp. 108164
Author(s):  
Chengxiang Ji ◽  
Shouguang Sun ◽  
Qiang Li ◽  
Zunsong Ren ◽  
Guangxue Yang

Sign in / Sign up

Export Citation Format

Share Document