scholarly journals Magnetic Nanoparticles to Unique DNA Tracers: Effect of Functionalization on Physico-chemical Properties

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Anuvansh Sharma ◽  
Jan Willem Foppen ◽  
Abhishek Banerjee ◽  
Slimani Sawssen ◽  
Nirmalya Bachhar ◽  
...  

Abstract To monitor and manage hydrological systems such as brooks, streams, rivers, the use of tracers is a well-established process. Limited number of potential tracers such as salts, isotopes and dyes, make study of hydrological processes a challenge. Traditional tracers find limited use due to lack of multiplexed, multipoint tracing and background noise, among others. In this regard, DNA based tracers possess remarkable advantages including, environmentally friendly, stability, and high sensitivity in addition to showing great potential in the synthesis of ideally unlimited number of unique tracers capable of multipoint tracing. To prevent unintentional losses in the environment during application and easy recovery for analysis, we hereby report DNA encapsulation in silica containing magnetic cores (iron oxide) of two different shapes—spheres and cubes. The iron oxide nanoparticles having size range 10–20 nm, have been synthesized using co-precipitation of iron salts or thermal decomposition of iron oleate precursor in the presence of oleic acid or sodium oleate. Physico-chemical properties such as size, zeta potential, magnetism etc. of the iron oxide nanoparticles have been optimized using different ligands for effective binding of dsDNA, followed by silanization. We report for the first time the effect of surface coating on the magnetic properties of the iron oxide nanoparticles at each stage of functionalization, culminating in silica shells. Efficiency of encapsulation of three different dsDNA molecules has been studied using quantitative polymerase chain reaction (qPCR). Our results show that our DNA based magnetic tracers are excellent candidates for hydrological monitoring with easy recoverability and high signal amplification. Graphic Abstract

Author(s):  
Anuvansh Sharma ◽  
Jan Willem Foppen ◽  
Abhishek Banerjee ◽  
Sawssen Slimani ◽  
Nirmalya Bachhar ◽  
...  

Abstract Limited number of potential tracers such as salts, isotopes and dyes, make study of hydrological processes a challenge. Traditional tracers find limited use due to lack of multipoint tracing and background noise, among others. DNA based tracers have been shown to have great potential enabling synthesis of ideally unlimited number of unique tracers besides being environmentally friendly, highly sensitive and capable of multipoint tracing. To prevent unintentional losses in the environment during application and easy recovery for analysis, we hereby report DNA encapsulation in silica containing magnetic cores (iron oxide) of two different shapes – spheres and cubes, in the size range 10-20 nm, synthesized using co-precipitation or thermal decomposition. Physico-chemical properties such as size, zeta potential, etc of the iron oxide nanoparticles have been optimized for different ligands and surfactants. We report for the first time the effect of surface coating on the magnetic properties of the iron oxide nanoparticles at each stage of functionalization, culminating in silica shells. Efficiency of encapsulation of three different dsDNA molecules has been studied using quantitative polymerase chain reaction (qPCR). Our results show that our DNA based magnetic tracers can be used for hydrological monitoring with easy recoverability and high signal amplification.


2013 ◽  
Vol 701 ◽  
pp. 212-216
Author(s):  
Hussein Mohd Zobir ◽  
Samuri Nor Suzariana ◽  
Shaari Abdul Halim

Superparamagnetic iron oxide nanoparticles were synthesized using co-precipitation, hydrothermal and ultrasonic routes from Fe2+/Fe3+ions and NaOH. The average diameter for the sample prepared using co-precipitation, hydrothermal and ultrasonic method is 33, 9 and 30 nm, respectively with surface area of 85, 117 and 87 m2/g, respectively. Although the results showed all the magnetite nanoparticles were superparamagnetic, but their saturation magnetization and coercitivity are different, depending on the method of synthesis. This study shows that method of synthesis is important that influence the physico-chemical properties of the resulting magnetite iron oxide nanoparticles.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1845
Author(s):  
Abdulkader Baki ◽  
Norbert Löwa ◽  
Amani Remmo ◽  
Frank Wiekhorst ◽  
Regina Bleul

Micromixer technology is a novel approach to manufacture magnetic single-core iron oxide nanoparticles that offer huge potential for biomedical applications. This platform allows a continuous, scalable, and highly controllable synthesis of magnetic nanoparticles with biocompatible educts via aqueous synthesis route. Since each biomedical application requires specific physical and chemical properties, a comprehensive understanding of the synthesis mechanisms is not only mandatory to control the size and shape of desired nanoparticle systems but, above all, to obtain the envisaged magnetic particle characteristics. The accurate process control of the micromixer technology can be maintained by adjusting two parameters: the synthesis temperature and the residence time. To this end, we performed a systematic variation of these two control parameters synthesizing magnetic nanoparticle systems, which were analyzed afterward by structural (transmission electron microscopy and differential sedimentation centrifugation) and, especially, magnetic characterization methods (magnetic particle spectroscopy and AC susceptibility). Furthermore, we investigated the reproducibility of the microtechnological nanoparticle manufacturing process compared to batch preparation. Our characterization demonstrated the high magnetic quality of single-core iron oxide nanoparticles with core diameters in the range of 20 nm to 40 nm synthesized by micromixer technology. Moreover, we demonstrated the high capability of a newly developed benchtop magnetic particle spectroscopy device that directly monitored the magnetic properties of the magnetic nanoparticles with the highest sensitivity and millisecond temporal resolution during continuous micromixer synthesis.


2013 ◽  
Vol 756 ◽  
pp. 74-79 ◽  
Author(s):  
Bashiru Kayode Sodipo ◽  
Azlan Abdul Aziz

Superparamagnetic iron oxide nanoparticles (SPION) of sizes 5 to10 nm were synthesized by the co-precipitation method. They are coated with silica nanoparticles using sonication method. The SPION was produced under the optimum pH of 10, peptized in acidic medium and redispersed in water. The silica nanoparticles were produced through the Stöbermethod. Sonochemical coating of silica nanoparticle on the SPION was successfulat a pH value lower than 5. Otherwise, at higher pH value (but lower than point zero charge (PZC)), the SPION were found to be unstable. Fast hydrolysis of triethoxyvinylsilane(TEVS) shows that silica forms its own particles without coating onto the surfaces of the SPION. Under optimized experimental condition, sonochemical method of coating silica nanoparticles onto the SPION can be considered as an alternative for effective and prompt method that rely mainly on pH of the suspension.


2013 ◽  
Vol 12 (06) ◽  
pp. 1330002 ◽  
Author(s):  
K. SHAMILI ◽  
E. M. RAJESH ◽  
R. RAJENDRAN ◽  
S. R. MADHAN SHANKAR ◽  
M. ELANGO ◽  
...  

Magnetic iron oxide nanoparticles are promising material for various biological applications. In the recent decades, magnetic iron oxide nanoparticles (MNPs) have great attention in biomedical applications such as drug delivery, magnetic resonance imaging (MRI) and magnetic fluid hyperthermia (MFH). This review focuses on the colloidal stability and monodispersity properties of MNPs, which pay more attention toward biomedical applications. The simplest and the most promising method for the synthesis of MNPs is co-precipitation. The biocompatible MNPs are more interested in MRI application. This review also apportions synthesis, characterization and applications of MNP in biological and biomedical as theranostics and imaging.


Sign in / Sign up

Export Citation Format

Share Document