scholarly journals MoS2 with Controlled Thickness for Electrocatalytic Hydrogen Evolution

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xiaoxuan Xu ◽  
Lei Liu

AbstractMolybdenum disulfide (MoS2) has moderate hydrogen adsorption free energy, making it an excellent alternative to replace noble metals as hydrogen evolution reaction (HER) catalysts. The thickness of MoS2 can affect its energy band structure and interface engineering, which are the avenue way to adjust HER performance. In this work, MoS2 films with different thicknesses were directly grown on the glassy carbon (GC) substrate by atomic layer deposition (ALD). The thickness of the MoS2 films can be precisely controlled by regulating the number of ALD cycles. The prepared MoS2/GC was directly used as the HER catalyst without a binder. The experimental results show that MoS2 with 200-ALD cycles (the thickness of 14.9 nm) has the best HER performance. Excessive thickness of MoS2 films not only lead to the aggregation of dense MoS2 nanosheets, resulting in reduction of active sites, but also lead to the increase of electrical resistance, reducing the electron transfer rate. MoS2 grown layer by layer on the substrate by ALD technology also significantly improves the bonding force between MoS2 and the substrate, showing excellent HER stability.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Lei Zhang ◽  
Rutong Si ◽  
Hanshuo Liu ◽  
Ning Chen ◽  
Qi Wang ◽  
...  

Abstract Single atom catalysts exhibit particularly high catalytic activities in contrast to regular nanomaterial-based catalysts. Until recently, research has been mostly focused on single atom catalysts, and it remains a great challenge to synthesize bimetallic dimer structures. Herein, we successfully prepare high-quality one-to-one A-B bimetallic dimer structures (Pt-Ru dimers) through an atomic layer deposition (ALD) process. The Pt-Ru dimers show much higher hydrogen evolution activity (more than 50 times) and excellent stability compared to commercial Pt/C catalysts. X-ray absorption spectroscopy indicates that the Pt-Ru dimers structure model contains one Pt-Ru bonding configuration. First principle calculations reveal that the Pt-Ru dimer generates a synergy effect by modulating the electronic structure, which results in the enhanced hydrogen evolution activity. This work paves the way for the rational design of bimetallic dimers with good activity and stability, which have a great potential to be applied in various catalytic reactions.


ChemInform ◽  
2014 ◽  
Vol 45 (11) ◽  
pp. no-no
Author(s):  
Jani Haemaelaeinen ◽  
Mikko Ritala ◽  
Markku Leskelae

2017 ◽  
Vol 139 (41) ◽  
pp. 14518-14525 ◽  
Author(s):  
Degao Wang ◽  
Matthew V. Sheridan ◽  
Bing Shan ◽  
Byron H. Farnum ◽  
Seth L. Marquard ◽  
...  

2012 ◽  
Vol 48 (7) ◽  
pp. 1063-1065 ◽  
Author(s):  
Irene J. Hsu ◽  
Yannick C. Kimmel ◽  
Xiaoqiang Jiang ◽  
Brian G. Willis ◽  
Jingguang G. Chen

2017 ◽  
Vol 5 (38) ◽  
pp. 20422-20427 ◽  
Author(s):  
Pranati Nayak ◽  
Qiu Jiang ◽  
Narendra Kurra ◽  
Xianbin Wang ◽  
Ulrich Buttner ◽  
...  

Atomic layer deposition (ALD) of Pt over monolithic 3D porous, laser scribed graphene scaffolds forms an efficient electrocatalyst for the hydrogen evolution reaction.


2004 ◽  
Vol 19 (11) ◽  
pp. 3353-3358 ◽  
Author(s):  
Titta Aaltonen ◽  
Mikko Ritala ◽  
Yung-Liang Tung ◽  
Yun Chi ◽  
Kai Arstila ◽  
...  

The low limit of the deposition temperature for atomic layer deposition (ALD) of noble metals has been studied. Two approaches were taken; using pure oxygen instead of air and using a noble metal starting surface instead of Al2O3. Platinum thin films were obtained by ALD from MeCpPtMe3 and pure oxygen at deposition temperature as low as 200 °C, which is significantly lower than the low-temperature limit of300 °C previously reported for the platinum ALD process in which air was used as the oxygen source. The platinum films grown in this study had smooth surfaces, adhered well to the substrate, and had low impurity contents. ALD of ruthenium, on the other hand, took place at lower deposition temperatures on an iridium seed layer than on an Al2O3 layer. On iridium surface, ruthenium films were obtained from RuCp2 and oxygen at 225 °C and from Ru(thd)3 and oxygen at 250 °C, whereas no films were obtained on Al2O3 at temperatures lower than 275 and 325 °C, respectively. The crystal orientation of the ruthenium films was found to depend on the precursor. ALD of palladium from a palladium β-ketoiminate precursor and oxygen at 250 and 275 °C was also studied. However, the film-growth rate did not saturate to a constant level when the precursor pulse times were increased.


Sign in / Sign up

Export Citation Format

Share Document