scholarly journals Black Phosphorus Nanoparticles Promote Osteogenic Differentiation of EMSCs Through Upregulated TG2 Expression

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Naiyan Lu ◽  
Xinhe Wang ◽  
Wentao Shi ◽  
Lu Bian ◽  
Xuan Zhang ◽  
...  

AbstractAt bio-safe concentrations, black phosphorus nanoparticles activated TG2, and promote the expression of ECM, which further promoted osteogenic differentiation of EMSCs. From these results, we can conclude that black phosphorus nanoparticles are suitable as biological factors in bone tissue engineering. Black phosphorus nanoparticles (BPs) present excellent biocompatibility and good biodegradability, which have been rigorously studied and proven. However, its utilization in bone tissue engineering fields is still in its infancy. Thus, the main purpose of the present study was to investigate the effects of BPs on osteogenic differentiation of ectodermal mesenchymal stem cell (EMSC) in vitro. Biocompatible BPs with high yield were prepared with a simple and efficient ultrasonication technique. EMSCs were isolated from adult rat nasal respiratory mucosa. Then, we treated EMSCs with BPs at different concentrations in vitro and examined the effect of BPs on osteogenic differentiation of EMSCs. In addition, inhibitor of transglutaminase 2 (TG2) and western blot were used to clarify the mechanism of the promoting effect of BPs on osteogenesis. Our results indicated that BPs could significantly enhance osteogenic differentiation of EMSCs in vitro. Nevertheless, BPs had no effect on EMSCs proliferation. Mechanistically, BPs promoted osteogenesis differentiation of EMSCs through upregulating TG2 expression. These results highlight the advantage of using chemical materials for novel engineering strategies of these highly promising small molecules for bone-tissue regeneration.

2021 ◽  
Vol 8 (8) ◽  
pp. 107
Author(s):  
Lilis Iskandar ◽  
Lucy DiSilvio ◽  
Jonathan Acheson ◽  
Sanjukta Deb

Despite considerable advances in biomaterials-based bone tissue engineering technologies, autografts remain the gold standard for rehabilitating critical-sized bone defects in the oral and maxillofacial (OMF) region. A majority of advanced synthetic bone substitutes (SBS’s) have not transcended the pre-clinical stage due to inferior clinical performance and translational barriers, which include low scalability, high cost, regulatory restrictions, limited advanced facilities and human resources. The aim of this study is to develop clinically viable alternatives to address the challenges of bone tissue regeneration in the OMF region by developing ‘dual network composites’ (DNC’s) of calcium metaphosphate (CMP)—poly(vinyl alcohol) (PVA)/alginate with osteogenic ions: calcium, zinc and strontium. To fabricate DNC’s, single network composites of PVA/CMP with 10% (w/v) gelatine particles as porogen were developed using two freeze–thawing cycles and subsequently interpenetrated by guluronate-dominant sodium alginate and chelated with calcium, zinc or strontium ions. Physicochemical, compressive, water uptake, thermal, morphological and in vitro biological properties of DNC’s were characterised. The results demonstrated elastic 3D porous scaffolds resembling a ‘spongy bone’ with fluid absorbing capacity, easily sculptable to fit anatomically complex bone defects, biocompatible and osteoconductive in vitro, thus yielding potentially clinically viable for SBS alternatives in OMF surgery.


Author(s):  
Masud Rana Md. ◽  
Naznin Akhtar ◽  
Zahid Hasan Md. ◽  
Asaduzzaman S M

Bone tissue engineering with cells and synthetic extracellular matrix represents a new approach for the regeneration of mineralized tissue compared with the transplantation of bone. Hydroxyapatite (HA) and its composite with biopolymer are extensively developed and applied in bone tissue regeneration. The main aim of this study was to fabricate and characterize of HA apatite based biocompatible scaffold for bone tissue engineering. Scaffolds with different ratio of polymers (chitosan & alginate), and fixed amount of synthetic HA were prepared using in situ co precipitation method and mineral to polymer ratio was 1:1 to 1: 2 . A cross linker agent, 2-Hydroxylmethacrylate (HEMA) was added at different percentage (0.5-2%) into the selected composition and irradiated at 5- 25 kGy to optimize the proper mixing of components at the presence of HEMA. Fabricated scaffolds were analyzed to determine porosity, density, biodegradability, morphology and structural properties. Porosity and density of the prepared scaffold were 75 to 92% and 0.21 to 0.42 g/cm3 respectively. However, the swelling ratio of the fabricated scaffolds was ranged from 133 to 197%. Nonetheless, there had a reasonable in-vitro degradation of prepared scaffolds. Flourier transform infrared spectroscopy (FTIR) analysis showed intermolecular interaction between components in the scaffold. Pore size of scaffold was measured by scanning electron microscope and the value was 162-510 μm. It could be proposed that this scaffold fulfills all the main requirements to be considered as a bone substitute for biomedical application in near future.


2021 ◽  
Author(s):  
Maxime Leblanc Latour ◽  
Maryam Tarar ◽  
Ryan J. Hickey ◽  
Charles M. Cuerrier ◽  
Isabelle Catelas ◽  
...  

Plant-derived cellulose biomaterials have recently been utilized in several tissue engineering applications. These naturally-derived cellulose scaffolds have been shown to be highly biocompatible in vivo, possess structural features of relevance to several tissues, and support mammalian cell invasion and proliferation. Recent work utilizing decellularized apple hypanthium tissue has shown that it possesses a pore size similar to trabecular bone and can successfully host osteogenic differentiation. In the present study, we further examined the potential of apple-derived cellulose scaffolds for bone tissue engineering (BTE) and analyzed their mechanical properties in vitro and in vivo. MC3T3-E1 pre-osteoblasts were seeded in cellulose scaffolds. Following chemically-induced osteogenic differentiation, scaffolds were evaluated for mineralization and for their mechanical properties. Alkaline phosphatase and Alizarin Red staining confirmed the osteogenic potential of the scaffolds. Histological analysis of the constructs revealed cell invasion and mineralization throughout the constructs. Furthermore, scanning electron microscopy demonstrated the presence of mineral aggregates on the scaffolds after culture in differentiation medium, and energy-dispersive spectroscopy confirmed the presence of phosphate and calcium. However, although the Young′s modulus significantly increased after cell differentiation, it remained lower than that of healthy bone tissue. Interestingly, mechanical assessment of acellular scaffolds implanted in rat calvaria defects for 8 weeks revealed that the force required to push out the scaffolds from the surrounding bone was similar to that of native calvarial bone. In addition, cell infiltration and extracellular matrix deposition were visible within the implanted scaffolds. Overall, our results confirm that plant-derived cellulose is a promising candidate for BTE applications. However, the discrepancy in mechanical properties between the mineralized scaffolds and healthy bone tissue may limit their use to low load-bearing applications. Further structural re-engineering and optimization to improve the mechanical properties may be required for load-bearing applications.


2015 ◽  
Vol 3 (42) ◽  
pp. 8375-8382 ◽  
Author(s):  
Young Min Shin ◽  
Wan-Geun La ◽  
Min Suk Lee ◽  
Hee Seok Yang ◽  
Youn-Mook Lim

A heparin conjugated fibrous particle resembling the structure of an extracellular matrix was developed. The BMP-2 loaded particles promoted osteogenic differentiation and healing of a bone defect, in vitro and in vivo.


2019 ◽  
Vol 7 (4) ◽  
pp. 1565-1573 ◽  
Author(s):  
Xiao-Yuan Peng ◽  
Min Hu ◽  
Fang Liao ◽  
Fan Yang ◽  
Qin-Fei Ke ◽  
...  

La-MCS/CTS scaffolds promoted the proliferation and osteogenic differentiation of rBMSCs in vitro and bone regeneration in vivo.


RSC Advances ◽  
2020 ◽  
Vol 10 (40) ◽  
pp. 23813-23828
Author(s):  
Muhammad Rizwan ◽  
Krishnamurithy Genasan ◽  
Malliga Raman Murali ◽  
Hanumantha Rao Balaji Raghavendran ◽  
Rodianah Alias ◽  
...  

HB 30 S composite scaffold inhibits Staphylococcus spp., supports the biocompatibility and osteogenic differentiation of hBMSCs and resists monocyte migration.


Sign in / Sign up

Export Citation Format

Share Document