scholarly journals On the robustness of generalization of drug–drug interaction models

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Rogia Kpanou ◽  
Mazid Abiodoun Osseni ◽  
Prudencio Tossou ◽  
Francois Laviolette ◽  
Jacques Corbeil

Abstract Background Deep learning methods are a proven commodity in many fields and endeavors. One of these endeavors is predicting the presence of adverse drug–drug interactions (DDIs). The models generated can predict, with reasonable accuracy, the phenotypes arising from the drug interactions using their molecular structures. Nevertheless, this task requires improvement to be truly useful. Given the complexity of the predictive task, an extensive benchmarking on structure-based models for DDIs prediction was performed to evaluate their drawbacks and advantages. Results We rigorously tested various structure-based models that predict drug interactions using different splitting strategies to simulate different real-world scenarios. In addition to the effects of different training and testing setups on the robustness and generalizability of the models, we then explore the contribution of traditional approaches such as multitask learning and data augmentation. Conclusion Structure-based models tend to generalize poorly to unseen drugs despite their ability to identify new DDIs among drugs seen during training accurately. Indeed, they efficiently propagate information between known drugs and could be valuable for discovering new DDIs in a database. However, these models will most probably fail when exposed to unknown drugs. While multitask learning does not help in our case to solve the problem, the use of data augmentation does at least mitigate it. Therefore, researchers must be cautious of the bias of the random evaluation scheme, especially if their goal is to discover new DDIs.

2019 ◽  
Vol 8 (2) ◽  
pp. 55-58
Author(s):  
Havizur Rahman ◽  
Teresia Anggi Octavia

Diabetes melitus merupakan penyakit degeneratif kronis yang apabila tidak ditangani dengan tepat, lama kelamaan bisa timbul berbagai komplikasi, ini cenderung menyebabkan pasien mendapatkan banyak obat dalam satu resep yang dapat menimbulkan interaksi antar obat. Tujuan dari penelitian ini adalah mengetahui persentase terjadinya interaksi obat metformin secara teori serta mengkaji efek yang mungkin timbul dan solusinya. Teknik pengambilan data dengan purpossive sampling, yaitu resep pasien rujuk balik yang menderita diabetes mellitus yang menggunakan metformin. Data yang diperoleh ditemukan bahwa obat yang berinteraksi dengan metformin dengan tingkat keparahan minor ialah sebesar 60%. Kemudian untuk tingkat keparahan moderat ialah sebesar 20%. Sedangkan untuk tingkat keparahan mayor tidak ditemukan. Dari tabel diatas juga dapat diketahui bahwa terdapat 4 obat yang saling berinteraksi dengan metformin, sedangkan untuk obat yang tidak saling berinteraksi dengan metformin terdapat 9 obat. Jumlah obat yang berinteraksi secara teori sebesar 6,85% dan yang tidak berinteraksi 93,15%. Terdapat interaksi obat metformin dengan beberapa obat yaitu furosemid, lisinopril, acarbose dan ramipril.   Kata kunci: interaksi obat, metformin, diabetes mellitus   STUDY OF METFORMIN INTERACTION IN MELLITUS DIABETES PATIENTS   ABSTRACT Mellitus is a chronic degenerative disease which if not handled properly, over time can arise various complications, this tends to cause patients to get many drugs in one recipe that can cause interactions between drugs. The purpose of this study is to determine percentage of metformin drug interactions in theory and examine the effects that may arise and solutions. Data collection techniques using purposive sampling, which is a recipe for reconciliation patients who suffer from diabetes mellitus using metformin. The data obtained it was found that drugs that interact with metformin with minor severity were 60%. Then for moderate severity is 20%. Whereas the major severity was not found. From the table above it can also be seen that there are 4 drugs that interact with metformin, while for drugs that do not interact with metformin there are 9 drugs. The number of drugs that interacted theoretically was 6.85% and 93.15% did not interact. An interaction of the drug metformin with several drugs namely furosemide, lisinopril, acarbose and ramipril.   Keywords: drug interaction, metformin, diabetes mellitus


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


2020 ◽  
Vol 17 (3) ◽  
pp. 299-305 ◽  
Author(s):  
Riaz Ahmad ◽  
Saeeda Naz ◽  
Muhammad Afzal ◽  
Sheikh Rashid ◽  
Marcus Liwicki ◽  
...  

This paper presents a deep learning benchmark on a complex dataset known as KFUPM Handwritten Arabic TexT (KHATT). The KHATT data-set consists of complex patterns of handwritten Arabic text-lines. This paper contributes mainly in three aspects i.e., (1) pre-processing, (2) deep learning based approach, and (3) data-augmentation. The pre-processing step includes pruning of white extra spaces plus de-skewing the skewed text-lines. We deploy a deep learning approach based on Multi-Dimensional Long Short-Term Memory (MDLSTM) networks and Connectionist Temporal Classification (CTC). The MDLSTM has the advantage of scanning the Arabic text-lines in all directions (horizontal and vertical) to cover dots, diacritics, strokes and fine inflammation. The data-augmentation with a deep learning approach proves to achieve better and promising improvement in results by gaining 80.02% Character Recognition (CR) over 75.08% as baseline.


2020 ◽  
Vol 21 ◽  
Author(s):  
Xuan Yu ◽  
Zixuan Chu ◽  
Jian Li ◽  
Rongrong He ◽  
Yaya Wang ◽  
...  

Background: Many antibiotics have a high potential for having an interaction with drugs, as perpetrator and/or victim, in critically ill patients, and particularly in sepsis patients. Methods: The aim of this review is to summarize the pharmacokinetic drug-drug interaction (DDI) of 45 antibiotics commonly used in sepsis care in China. Literature mining was conducted to obtain human pharmacokinetics/dispositions of the antibiotics, their interactions with drug metabolizing enzymes or transporters, and their associated clinical drug interactions. Potential DDI is indicated by a DDI index > 0.1 for inhibition or a treated-cell/untreated-cell ratio of enzyme activity being > 2 for induction. Results: The literature-mined information on human pharmacokinetics of the identified antibiotics and their potential drug interactions is summarized. Conclusion: Antibiotic-perpetrated drug interactions, involving P450 enzyme inhibition, have been reported for four lipophilic antibacterials (ciprofloxacin, erythromycin, trimethoprim, and trimethoprim-sulfamethoxazole) and three lipophilic antifungals (fluconazole, itraconazole, and voriconazole). In addition, seven hydrophilic antibacterials (ceftriaxone, cefamandole, piperacillin, penicillin G, amikacin, metronidazole, and linezolid) inhibit drug transporters in vitro. Despite no reported clinical PK drug interactions with the transporters, caution is advised in the use of these antibacterials. Eight hydrophilic antibacterials (all β-lactams; meropenem, cefotaxime, cefazolin, piperacillin, ticarcillin, penicillin G, ampicillin, and flucloxacillin), are potential victims of drug interactions due to transporter inhibition. Rifampin is reported to perpetrate drug interactions by inducing CYP3A or inhibiting OATP1B; it is also reported to be a victim of drug interactions, due to the dual inhibition of CYP3A4 and OATP1B by indinavir. In addition, three antifungals (caspofungin, itraconazole, and voriconazole) are reported to be victims of drug interactions because of P450 enzyme induction. Reports for other antibiotics acting as victims in drug interactions are scarce.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yong He ◽  
Hong Zeng ◽  
Yangyang Fan ◽  
Shuaisheng Ji ◽  
Jianjian Wu

In this paper, we proposed an approach to detect oilseed rape pests based on deep learning, which improves the mean average precision (mAP) to 77.14%; the result increased by 9.7% with the original model. We adopt this model to mobile platform to let every farmer able to use this program, which will diagnose pests in real time and provide suggestions on pest controlling. We designed an oilseed rape pest imaging database with 12 typical oilseed rape pests and compared the performance of five models, SSD w/Inception is chosen as the optimal model. Moreover, for the purpose of the high mAP, we have used data augmentation (DA) and added a dropout layer. The experiments are performed on the Android application we developed, and the result shows that our approach surpasses the original model obviously and is helpful for integrated pest management. This application has improved environmental adaptability, response speed, and accuracy by contrast with the past works and has the advantage of low cost and simple operation, which are suitable for the pest monitoring mission of drones and Internet of Things (IoT).


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Malte Seemann ◽  
Lennart Bargsten ◽  
Alexander Schlaefer

AbstractDeep learning methods produce promising results when applied to a wide range of medical imaging tasks, including segmentation of artery lumen in computed tomography angiography (CTA) data. However, to perform sufficiently, neural networks have to be trained on large amounts of high quality annotated data. In the realm of medical imaging, annotations are not only quite scarce but also often not entirely reliable. To tackle both challenges, we developed a two-step approach for generating realistic synthetic CTA data for the purpose of data augmentation. In the first step moderately realistic images are generated in a purely numerical fashion. In the second step these images are improved by applying neural domain adaptation. We evaluated the impact of synthetic data on lumen segmentation via convolutional neural networks (CNNs) by comparing resulting performances. Improvements of up to 5% in terms of Dice coefficient and 20% for Hausdorff distance represent a proof of concept that the proposed augmentation procedure can be used to enhance deep learning-based segmentation for artery lumen in CTA images.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3046
Author(s):  
Shervin Minaee ◽  
Mehdi Minaei ◽  
Amirali Abdolrashidi

Facial expression recognition has been an active area of research over the past few decades, and it is still challenging due to the high intra-class variation. Traditional approaches for this problem rely on hand-crafted features such as SIFT, HOG, and LBP, followed by a classifier trained on a database of images or videos. Most of these works perform reasonably well on datasets of images captured in a controlled condition but fail to perform as well on more challenging datasets with more image variation and partial faces. In recent years, several works proposed an end-to-end framework for facial expression recognition using deep learning models. Despite the better performance of these works, there are still much room for improvement. In this work, we propose a deep learning approach based on attentional convolutional network that is able to focus on important parts of the face and achieves significant improvement over previous models on multiple datasets, including FER-2013, CK+, FERG, and JAFFE. We also use a visualization technique that is able to find important facial regions to detect different emotions based on the classifier’s output. Through experimental results, we show that different emotions are sensitive to different parts of the face.


Sign in / Sign up

Export Citation Format

Share Document