scholarly journals Functional analysis of CfSnf1 in the development and pathogenicity of anthracnose fungus Colletotrichum fructicola on tea-oil tree

BMC Genetics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Shengpei Zhang ◽  
Yuan Guo ◽  
Sizheng Li ◽  
Guoying Zhou ◽  
Junang Liu ◽  
...  

Abstract Background Tea-oil tree (Camellia oleifera) is a unique edible-oil tree in China, and anthracnose occurs in wherever it is cultivated, causing great economic losses each year. We have previously identified the Ascomycete fungus Colletotrichum fructicola as the major pathogen of anthracnose in Ca.oleifera. The purpose of this study was to characterize the biological function of Snf1 protein, a key component of the AMPK (AMP-activated protein kinase) pathway, for the molecular pathogenic-mechanisms of C. fructicola. Results We characterized CfSnf1 as the homolog of Saccharomyces cerevisiae Snf1. Targeted CfSNF1 gene deletion revealed that CfSnf1 is involved in the utilization of specific carbon sources, conidiation, and stress responses. We further found that the ΔCfSnf1 mutant was not pathogenic to Ca.oleifera, resulting from its defect in appressorium formation. In addition, we provided evidence showing crosstalk between the AMPK and the cAMP/PKA pathways for the first time in filamentous fungi. Conclusion This study indicate that CfSnf1 is a critical factor in the development and pathogenicity of C. fructicola and, therefore, a potential fungicide target for anthracnose control.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Zhangyang Xu ◽  
Chunmei Pan ◽  
Xiaolu Li ◽  
Naijia Hao ◽  
Tong Zhang ◽  
...  

Abstract Background Efficient utilization of all available carbons from lignocellulosic biomass is critical for economic efficiency of a bioconversion process to produce renewable bioproducts. However, the metabolic responses that enable Pseudomonas putida to utilize mixed carbon sources to generate reducing power and polyhydroxyalkanoate (PHA) remain unclear. Previous research has mainly focused on different fermentation strategies, including the sequential feeding of xylose as the growth stage substrate and octanoic acid as the PHA-producing substrate, feeding glycerol as the sole carbon substrate, and co-feeding of lignin and glucose. This study developed a new strategy—co-feeding glycerol and lignin derivatives such as benzoate, vanillin, and vanillic acid in Pseudomonas putida KT2440—for the first time, which simultaneously improved both cell biomass and PHA production. Results Co-feeding lignin derivatives (i.e. benzoate, vanillin, and vanillic acid) and glycerol to P. putida KT2440 was shown for the first time to simultaneously increase cell dry weight (CDW) by 9.4–16.1% and PHA content by 29.0–63.2%, respectively, compared with feeding glycerol alone. GC–MS results revealed that the addition of lignin derivatives to glycerol decreased the distribution of long-chain monomers (C10 and C12) by 0.4–4.4% and increased the distribution of short-chain monomers (C6 and C8) by 0.8–3.5%. The 1H–13C HMBC, 1H–13C HSQC, and 1H–1H COSY NMR analysis confirmed that the PHA monomers (C6–C14) were produced when glycerol was fed to the bacteria alone or together with lignin derivatives. Moreover, investigation of the glycerol/benzoate/nitrogen ratios showed that benzoate acted as an independent factor in PHA synthesis. Furthermore, 1H, 13C and 31P NMR metabolite analysis and mass spectrometry-based quantitative proteomics measurements suggested that the addition of benzoate stimulated oxidative-stress responses, enhanced glycerol consumption, and altered the intracellular NAD+/NADH and NADPH/NADP+ ratios by up-regulating the proteins involved in energy generation and storage processes, including the Entner–Doudoroff (ED) pathway, the reductive TCA route, trehalose degradation, fatty acid β-oxidation, and PHA biosynthesis. Conclusions This work demonstrated an effective co-carbon feeding strategy to improve PHA content/yield and convert lignin derivatives into value-added products in P. putida KT2440. Co-feeding lignin break-down products with other carbon sources, such as glycerol, has been demonstrated as an efficient way to utilize biomass to increase PHA production in P. putida KT2440. Moreover, the involvement of aromatic degradation favours further lignin utilization, and the combination of proteomics and metabolomics with NMR sheds light on the metabolic and regulatory mechanisms for cellular redox balance and potential genetic targets for a higher biomass carbon conversion efficiency.


2020 ◽  
Author(s):  
Zhangyang Xu ◽  
Chunmei Pan ◽  
Xiaolu Li ◽  
Naijia Hao ◽  
Tong Zhang ◽  
...  

Abstract Background: Efficient utilization of all available carbons from lignocellulosic biomass is critical for economic efficiency of a bioconversion process to produce renewable bioproducts. However, the metabolic responses that enable Pseudomonas putida to utilize mixed carbon sources to generate reducing power and Polyhydroxyalkanoate (PHA) remain unclear. Previous research has mainly focused on different fermentation strategies, including the sequential feeding of xylose as the growth stage substrate and octanoic acid as the PHA producing substrate, feeding glycerol as the sole carbon substrate, and co-feeding of lignin and glucose. This study developed a new strategy - co-feeding glycerol and lignin derivatives such as benzoate, vanillin, and vanillic acid in Pseudomonas putida KT2440 - for the first time, which simultaneously improved both cell biomass and PHA production. Results: Co-feeding lignin derivatives (i.e. benzoate, vanillin, and vanillic acid) and glycerol to P. putida KT2440 was shown for the first time to simultaneously increase cell dry weight (CDW) by 9.4 %-16.1 % and PHA content by 29.0 %-63.2 %, respectively, compared with feeding glycerol alone. GC-MS results revealed that the addition of lignin derivatives to glycerol decreased the distribution of long chain monomers (C10 and C12) by 0.4 %-4.4 % and increased the distribution of short chain monomers (C6 and C8) by 0.8 %-3.5 %. The 1H -13C HMBC, 1H-13C HSQC, and 1H-1H COSY NMR analysis confirmed that the PHA monomers (C6-C14) were produced when glycerol was fed to the bacteria alone or together with lignin derivatives. Moreover, investigation of the glycerol/benzoate/nitrogen ratios showed that benzoate acted as an independent factor in PHA synthesis. Furthermore, 1H, 13C and 31P NMR metabolite analysis and mass spectrometry-based quantitative proteomics measurements suggested that the addition of benzoate stimulated oxidative-stress responses enhanced glycerol consumption and altered the intracellular NAD(P)+/NAD(P)H ratios by up-regulating the proteins involved in energy generation and storage processes, including the Entner-Doudoroff (ED) pathway, the reductive TCA route, trehalose degradation, fatty-acid β-oxidation, and PHA biosynthesis.Conclusions: This work demonstrated an effective co-carbon feeding strategy to improve PHA yield and convert lignin derivatives into value-added products in P. putida KT2440. Co-feeding lignin derivativeswith other carbon sources, such as glycerol, has been demonstrated as an efficient way to utilize biomass to increase PHA production in P. putida KT2440. Moreover, the involvement of aromatic degradation favors further lignin utilization, and the combination of proteomics and metabolomics with NMR sheds light on the metabolic and regulatory mechanisms for cellular redox balance and potential genetic targets for a higher biomass carbon conversion efficiency.


2020 ◽  
Vol 9 (1) ◽  
pp. 3
Author(s):  
Saskia Rughöft ◽  
Nico Jehmlich ◽  
Tony Gutierrez ◽  
Sara Kleindienst

The application of chemical dispersants during marine oil spills can affect the community composition and activity of marine microorganisms. Several studies have indicated that certain marine hydrocarbon-degrading bacteria, such as Marinobacter spp., can be inhibited by chemical dispersants, resulting in lower abundances and/or reduced biodegradation rates. However, a major knowledge gap exists regarding the mechanisms underlying these physiological effects. Here, we performed comparative proteomics of the Deepwater Horizon isolate Marinobacter sp. TT1 grown under different conditions. Strain TT1 received different carbon sources (pyruvate vs. n-hexadecane) with and without added dispersant (Corexit EC9500A). Additional treatments contained crude oil in the form of a water-accommodated fraction (WAF) or chemically-enhanced WAF (CEWAF; with Corexit). For the first time, we identified the proteins associated with alkane metabolism and alginate biosynthesis in strain TT1, report on its potential for aromatic hydrocarbon biodegradation and present a protein-based proposed metabolism of Corexit components as carbon substrates. Our findings revealed that Corexit exposure affects hydrocarbon metabolism, chemotactic motility, biofilm formation, and induces solvent tolerance mechanisms, like efflux pumps, in strain TT1. This study provides novel insights into dispersant impacts on microbial hydrocarbon degraders that should be taken into consideration for future oil spill response actions.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 425
Author(s):  
Hyung-Woo Kang ◽  
Eun-Yong Lee ◽  
Kyoung-Ki Lee ◽  
Mi-Kyeong Ko ◽  
Ji-Young Park ◽  
...  

Equine herpesvirus-1 (EHV-1) is an important pathogen in horses. It affects horses worldwide and causes substantial economic losses. In this study, for the first time, we characterized EHV-1 isolates from South Korea at the molecular level. We then aimed to determine the genetic divergences of these isolates by comparing them to sequences in databases. In total, 338 horse samples were collected, and 12 EHV-1 were isolated. We performed ORF30, ORF33, ORF68, and ORF34 genetic analysis and carried out multi-locus sequence typing (MLST) of 12 isolated EHV-1. All isolated viruses were confirmed as non-neuropathogenic type, showing N752 of ORF30 and highly conserved ORF33 (99.7–100%). Isolates were unclassified using ORF68 analysis because of a 118 bp deletion in nucleotide sequence 701–818. Seven EHV-1 isolates (16Q4, 19R166-1, 19R166-6, 19/10/15-2, 19/10/15-4, 19/10/18-2, 19/10/22-1) belonged to group 1, clade 10, based on ORF34 and MLST analysis. The remaining 5 EHV-1 isolates (15Q25-1, 15D59, 16Q5, 16Q40, 18D99) belonged to group 7, clade 6, based on ORF34 and MLST analysis.


2021 ◽  
Vol 9 (10) ◽  
pp. 6423-6431
Author(s):  
Xieji Lin ◽  
Yue Dong ◽  
Xiaohong Chen ◽  
Haiyan Liu ◽  
Zhaobin Liu ◽  
...  

It is the first time that metallasilsesquioxanes are introduced into the synthesis of porous carbon nanosheets. Lithium hepta(i-butyl)silsesquioxane trisilanolate is a multifunctional precursor for both carbon sources and templates with different dimensions.


2021 ◽  
Author(s):  
Ezequiel Andres Vanderhoeven ◽  
Jessica P. Mosmann ◽  
Adrián Díaz ◽  
Cecilia G. Cuffini

Abstract Chlamydias are obligated intracellular Gram-negative bacteria, considered important zoonotic pathogens, broadly present in several bird species and responsible for economic losses in animal production. We analyzed the presence of Chlamydial species with zoonotic risk in farm animals in a highly biodiverse area and with great human circulation, the Argentine, Brazil and Paraguay tri-border area. We surveyed nine farms in an area and nasally swabbed a total of 62 animals. DNA was extracted and specific PCR was performed to identify chlamydial species. We detected Chlamydia spp . in 6.5% (4/62) of the animals tested, positive samples belonged to cattle and none of them showed symptoms of respiratory disease nor had been diagnose with reproductive diseases. Specific nested PCR confirmed two samples belonged to C. pecorum and two to C. psittaci . We report for the first time Chlamydia circulation with zoonotic risk in the region. Surveys in birds and wild mammals could give a better understanding to know what Chlamydial species are circulating in the wild interface. The zoonotic potential should be taking into account as farm workers and the surrounding population could be silent carriers or have respiratory diseases being underdiagnosed, and therefore should be considered in the differential diagnoses.


2007 ◽  
Vol 17 (5) ◽  
pp. 667-678 ◽  
Author(s):  
Maria Carmen Solaz-Fuster ◽  
José Vicente Gimeno-Alcañiz ◽  
Susana Ros ◽  
Maria Elena Fernandez-Sanchez ◽  
Belen Garcia-Fojeda ◽  
...  

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3955 ◽  
Author(s):  
Yiling Niu ◽  
Tingting Zhao ◽  
Xiangyang Xu ◽  
Jingfu Li

Solanum lycopersicum, belonging to Solanaceae, is one of the commonly used model plants. The GRAS genes are transcriptional regulators, which play a significant role in plant growth and development, and the functions of several GRAS genes have been recognized, such as, axillary shoot meristem formation, radial root patterning, phytohormones (gibberellins) signal transduction, light signaling, and abiotic/biotic stress; however, only a few of these were identified and functionally characterized. In this study, a gene family was analyzed comprehensively with respect to phylogeny, gene structure, chromosomal localization, and expression pattern; the 54 GRAS members were screened from tomato by bioinformatics for the first time. The GRAS genes among tomato, Arabidopsis, rice, and grapevine were rebuilt to form a phylogenomic tree, which was divided into ten groups according to the previous classification of Arabidopsis and rice. A multiple sequence alignment exhibited the typical GRAS domain and conserved motifs similar to other gene families. Both the segmental and tandem duplications contributed significantly to the expansion and evolution of the GRAS gene family in tomato; the expression patterns across a variety of tissues and biotic conditions revealed potentially different functions of GRAS genes in tomato development and stress responses. Altogether, this study provides valuable information and robust candidate genes for future functional analysis for improving the resistance of tomato growth.


Sign in / Sign up

Export Citation Format

Share Document