scholarly journals Mal-Prec: computational prediction of protein Malonylation sites via machine learning based feature integration

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Xin Liu ◽  
Liang Wang ◽  
Jian Li ◽  
Junfeng Hu ◽  
Xiao Zhang

Abstract Background Malonylation is a recently discovered post-translational modification that is associated with a variety of diseases such as Type 2 Diabetes Mellitus and different types of cancers. Compared with experimental identification of malonylation sites, computational method is a time-effective process with comparatively low costs. Results In this study, we proposed a novel computational model called Mal-Prec (Malonylation Prediction) for malonylation site prediction through the combination of Principal Component Analysis and Support Vector Machine. One-hot encoding, physio-chemical properties, and composition of k-spaced acid pairs were initially performed to extract sequence features. PCA was then applied to select optimal feature subsets while SVM was adopted to predict malonylation sites. Five-fold cross-validation results showed that Mal-Prec can achieve better prediction performance compared with other approaches. AUC (area under the receiver operating characteristic curves) analysis achieved 96.47 and 90.72% on 5-fold cross-validation of independent data sets, respectively. Conclusion Mal-Prec is a computationally reliable method for identifying malonylation sites in protein sequences. It outperforms existing prediction tools and can serve as a useful tool for identifying and discovering novel malonylation sites in human proteins. Mal-Prec is coded in MATLAB and is publicly available at https://github.com/flyinsky6/Mal-Prec, together with the data sets used in this study.

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3261 ◽  
Author(s):  
BingHua Wang ◽  
Minghui Wang ◽  
Ao Li

Protein post-translational modification (PTM) is an important mechanism that is involved in the regulation of protein function. Considering the high-cost and labor-intensive of experimental identification, many computational prediction methods are currently available for the prediction of PTM sites by using protein local sequence information in the context of conserved motif. Here we proposed a novel computational method by using the combination of multiple kernel support vector machines (SVM) for predicting PTM sites including phosphorylation, O-linked glycosylation, acetylation, sulfation and nitration. To largely make use of local sequence information and site-modification relationships, we developed a local sequence kernel and Gaussian interaction profile kernel, respectively. Multiple kernels were further combined to train SVM for efficiently leveraging kernel information to boost predictive performance. We compared the proposed method with existing PTM prediction methods. The experimental results revealed that the proposed method performed comparable or better performance than the existing prediction methods, suggesting the feasibility of the developed kernels and the usefulness of the proposed method in PTM sites prediction.


2020 ◽  
Vol 3 (2) ◽  
pp. 133-143
Author(s):  
Dessy Kusumaningrum ◽  
Elly Matul Imah

Kondisi psikologis dan fisik manusia dapat memengaruhi proses berpikir. Apabila kondisi individu mengalami kelelahan, maka dapat memengaruhi penurunan tingkat produktivitas maupun penurunan proses berpikir yang menyebabkan timbulnya mental workload. Workload yang dimiliki harus seimbang terhadap kemampuan dan keterbatasan yang dimiliki. Mental workload yang berlebih berdampak buruk bagi individu karena menimbulkan penurunan produktivitas kerja. Perangkat khusus yang dapat digunakan untuk mengetahui tingkat mental workload seorang individu adalah Electroencephalogram (EEG). EEG adalah perangkat khusus yang digunakan untuk mengukur sinyal potensi listrik dari otak. Dataset yang digunakan dalam penelitian ini adalah STEW: Simultaneous Task EEG Dataset dengan 45 subjek. Dalam penelitian ini, telah dilakukan studi komparasi algoritma Random Forest, K-Nearest Neighbor (KNN), Multi-Layer Perceptron (MLP), dan Support Vector Machine (SVM) untuk klasifikasi mental workload berdasarkan sinyal EEG. Studi dilakukan untuk menentukan algoritma terbaik dalam klasifikasi dilihat dari segi nilai akurasi dan penggunaan memori saat proses klasifikasi. Dataset telah melalui beberapa tahapan, diantaranya pra-pemrosesan data, ekstraksi fitur, dan proses klasifikasi. Pra-pemrosesan data menerapkan pembagian data menjadi beberapa chunk. Untuk mendapatkan ciri dalam ekstraksi fitur, diterapkan metode Principal Component Analysis (PCA). Pada proses klasifikasi menggunakan pendekatan k-fold cross validation. Hasil studi penelitian ini adalah algoritma terbaik dari sisi akurasi adalah algoritma KNN, algoritma terbaik dari sisi waktu pembuatan model adalah algoritma Random Forest, serta algoritma terbaik dari sisi penggunaan memori adalah algoritma MLP.


2018 ◽  
Vol 1 (1) ◽  
pp. 120-130 ◽  
Author(s):  
Chunxiang Qian ◽  
Wence Kang ◽  
Hao Ling ◽  
Hua Dong ◽  
Chengyao Liang ◽  
...  

Support Vector Machine (SVM) model optimized by K-Fold cross-validation was built to predict and evaluate the degradation of concrete strength in a complicated marine environment. Meanwhile, several mathematical models, such as Artificial Neural Network (ANN) and Decision Tree (DT), were also built and compared with SVM to determine which one could make the most accurate predictions. The material factors and environmental factors that influence the results were considered. The materials factors mainly involved the original concrete strength, the amount of cement replaced by fly ash and slag. The environmental factors consisted of the concentration of Mg2+, SO42-, Cl-, temperature and exposing time. It was concluded from the prediction results that the optimized SVM model appeared to perform better than other models in predicting the concrete strength. Based on SVM model, a simulation method of variables limitation was used to determine the sensitivity of various factors and the influence degree of these factors on the degradation of concrete strength.


2019 ◽  
Vol 20 (S23) ◽  
Author(s):  
Cheng Yan ◽  
Guihua Duan ◽  
Fang-Xiang Wu ◽  
Jianxin Wang

Abstract Background Viral infectious diseases are the serious threat for human health. The receptor-binding is the first step for the viral infection of hosts. To more effectively treat human viral infectious diseases, the hidden virus-receptor interactions must be discovered. However, current computational methods for predicting virus-receptor interactions are limited. Result In this study, we propose a new computational method (IILLS) to predict virus-receptor interactions based on Initial Interaction scores method via the neighbors and the Laplacian regularized Least Square algorithm. IILLS integrates the known virus-receptor interactions and amino acid sequences of receptors. The similarity of viruses is calculated by the Gaussian Interaction Profile (GIP) kernel. On the other hand, we also compute the receptor GIP similarity and the receptor sequence similarity. Then the sequence similarity is used as the final similarity of receptors according to the prediction results. The 10-fold cross validation (10CV) and leave one out cross validation (LOOCV) are used to assess the prediction performance of our method. We also compare our method with other three competing methods (BRWH, LapRLS, CMF). Conlusion The experiment results show that IILLS achieves the AUC values of 0.8675 and 0.9061 with the 10-fold cross validation and leave-one-out cross validation (LOOCV), respectively, which illustrates that IILLS is superior to the competing methods. In addition, the case studies also further indicate that the IILLS method is effective for the virus-receptor interaction prediction.


2017 ◽  
Vol 17 (2) ◽  
pp. 29-38
Author(s):  
Ratih Purwati ◽  
Gunawan Ariyanto

Face Recognition merupakan teknologi komputer untuk mengidentifikasi wajah manusia melalui gambar digital yang tersimpan di database. Wajah manusia dapat berubah bentuk sesuai dengan ekspresi yang dimilikinya. Wajah manusia dapat berubah bentuk sesuai dengan eskpresi yang dimilikinya. Ekspresi wajah manusia memiliki kemiripan satu sama lain sehingga untuk mengenali suatu ekspresi adalah kepunyaan siapa akan sedikit sulit. Pengenalan wajah terus menjadi topik aktif di zaman sekarang pada penelitian bidang computer vision. Penggunaan wajah manusia sering kita jumpai pada fitur-fitur aplikasi media sosial seperti Snapchat, Snapgram dari Instagram dan banyak aplikasi sosial media lainnya yang menggunakan teknologi tersebut. Pada penelitian ini dilakukan analisa pengenalan ekpresi wajah manusia dengan pendekatan fitur alogaritma Local Binary Pattern dan mencari pengembangan alogaritma dasar Local Binary Pattern yang paling optimal dengan cara menggabungkan metode Hisogram Equalization, Support Vector Machine, dan K-fold cross validation sehingga dapat meningkatkan pengenalan gambar wajah manusia pada hasil yang terbaik. Penelitian ini menginput beberapa database wajah manusia seperti JAFFE yang merupakan gambar wajah manusia wanita jepang yang berjumlah 10 orang dengan 7 ekspresi emosional seperti marah, sedih, bahagia, jijik, kaget, takut dan netral ke dalam sistem. YALE yaitu merupakan gambar wajah manusia orang Amerika. Serta menggunakan dataset CALTECH yang merupakan gambar manusia yang terdiri dari 450 gambar dengan ukuran 896 x 592 piksel dan disimpan dalam format JPEG. Kemudian data tersebut di sesuaikan dengan bentuk tekstur wajah masing-masing. Dari hasil penggabungan ketiga metode diatas dan percobaan-percobaan yang sudah dilakukan, didapatkan hasil yang paling optimal dalam pengenalan wajah manusia yaitu menggunakan dataset JAFFE dengan resolusi 92 x 112 piksel dan dengan tingkat penggunaan processor yang tinggi dapat mempengaruhi waktu kecepatan komputasi dalam proses menjalankan sistem sehingga menghasilkan prediksi yang lebih tepat.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Hua Tang ◽  
Hao Lin

Objective: Apolipoproteins are of great physiological importance and are associated with different diseases such as dyslipidemia, thrombogenesis and angiocardiopathy. Apolipoproteins have therefore emerged as key risk markers and important research targets yet the types of apolipoproteins has not been fully elucidated. Accurate identification of the apoliproproteins is very crucial to the comprehension of cardiovascular diseases and drug design. The aim of this study is to develop a powerful model to precisely identify apolipoproteins. Approach and Results: We manually collected a non-redundant dataset of 53 apoliproproteins and 136 non-apoliproproteins with the sequence identify of less than 40% from UniProt. After formulating the protein sequence samples with g -gap dipeptide composition (here g =1~10), the analysis of various (ANOVA) was adopted to find out the best feature subset which can achieve the best accuracy. Support Vector Machine (SVM) was then used to perform classification. The predictive model was evaluated using a five-fold cross-validation which yielded a sensitivity of 96.2%, a specificity of 99.3%, and an accuracy of 98.4%. The study indicated that the proposed method could be a feasible means of conducting preliminary analyses of apoliproproteins. Conclusion: We demonstrated that apoliproproteins can be predicted from their primary sequences. Also we discovered the special dipeptide distribution in apoliproproteins. These findings open new perspectives to improve apoliproproteins prediction by considering the specific dipeptides. We expect that these findings will help to improve drug development in anti-angiocardiopathy disease. Key words: Apoliproproteins Angiocardiopathy Support Vector Machine


Mekatronika ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 27-31
Author(s):  
Ken-ji Ee ◽  
Ahmad Fakhri Bin Ab. Nasir ◽  
Anwar P. P. Abdul Majeed ◽  
Mohd Azraai Mohd Razman ◽  
Nur Hafieza Ismail

The animal classification system is a technology to classify the animal class (type) automatically and useful in many applications. There are many types of learning models applied to this technology recently. Nonetheless, it is worth noting that the extraction of the features and the classification of the animal features is non-trivial, particularly in the deep learning approach for a successful animal classification system. The use of Transfer Learning (TL) has been demonstrated to be a powerful tool in the extraction of essential features. However, the employment of such a method towards animal classification applications are somewhat limited. The present study aims to determine a suitable TL-conventional classifier pipeline for animal classification. The VGG16 and VGG19 were used in extracting features and then coupled with either k-Nearest Neighbour (k-NN) or Support Vector Machine (SVM) classifier. Prior to that, a total of 4000 images were gathered consisting of a total of five classes which are cows, goats, buffalos, dogs, and cats. The data was split into the ratio of 80:20 for train and test. The classifiers hyper parameters are tuned by the Grids Search approach that utilises the five-fold cross-validation technique. It was demonstrated from the study that the best TL pipeline identified is the VGG16 along with an optimised SVM, as it was able to yield an average classification accuracy of 0.975. The findings of the present investigation could facilitate animal classification application, i.e. for monitoring animals in wildlife.


2020 ◽  
Vol 10 (9) ◽  
pp. 3291
Author(s):  
Jesús F. Pérez-Gómez ◽  
Juana Canul-Reich ◽  
José Hernández-Torruco ◽  
Betania Hernández-Ocaña

Requiring only a few relevant characteristics from patients when diagnosing bacterial vaginosis is highly useful for physicians as it makes it less time consuming to collect these data. This would result in having a dataset of patients that can be more accurately diagnosed using only a subset of informative or relevant features in contrast to using the entire set of features. As such, this is a feature selection (FS) problem. In this work, decision tree and Relief algorithms were used as feature selectors. Experiments were conducted on a real dataset for bacterial vaginosis with 396 instances and 252 features/attributes. The dataset was obtained from universities located in Baltimore and Atlanta. The FS algorithms utilized feature rankings, from which the top fifteen features formed a new dataset that was used as input for both support vector machine (SVM) and logistic regression (LR) algorithms for classification. For performance evaluation, averages of 30 runs of 10-fold cross-validation were reported, along with balanced accuracy, sensitivity, and specificity as performance measures. A performance comparison of the results was made between using the total number of features against using the top fifteen. These results found similar attributes from our rankings compared to those reported in the literature. This study is part of ongoing research that is investigating a range of feature selection and classification methods.


Author(s):  
WASIF AFZAL ◽  
RICHARD TORKAR ◽  
ROBERT FELDT

In the presence of a number of algorithms for classification and prediction in software engineering, there is a need to have a systematic way of assessing their performances. The performance assessment is typically done by some form of partitioning or resampling of the original data to alleviate biased estimation. For predictive and classification studies in software engineering, there is a lack of a definitive advice on the most appropriate resampling method to use. This is seen as one of the contributing factors for not being able to draw general conclusions on what modeling technique or set of predictor variables are the most appropriate. Furthermore, the use of a variety of resampling methods make it impossible to perform any formal meta-analysis of the primary study results. Therefore, it is desirable to examine the influence of various resampling methods and to quantify possible differences. Objective and method: This study empirically compares five common resampling methods (hold-out validation, repeated random sub-sampling, 10-fold cross-validation, leave-one-out cross-validation and non-parametric bootstrapping) using 8 publicly available data sets with genetic programming (GP) and multiple linear regression (MLR) as software quality classification approaches. Location of (PF, PD) pairs in the ROC (receiver operating characteristics) space and area under an ROC curve (AUC) are used as accuracy indicators. Results: The results show that in terms of the location of (PF, PD) pairs in the ROC space, bootstrapping results are in the preferred region for 3 of the 8 data sets for GP and for 4 of the 8 data sets for MLR. Based on the AUC measure, there are no significant differences between the different resampling methods using GP and MLR. Conclusion: There can be certain data set properties responsible for insignificant differences between the resampling methods based on AUC. These include imbalanced data sets, insignificant predictor variables and high-dimensional data sets. With the current selection of data sets and classification techniques, bootstrapping is a preferred method based on the location of (PF, PD) pair data in the ROC space. Hold-out validation is not a good choice for comparatively smaller data sets, where leave-one-out cross-validation (LOOCV) performs better. For comparatively larger data sets, 10-fold cross-validation performs better than LOOCV.


Sign in / Sign up

Export Citation Format

Share Document