scholarly journals Transcriptome analysis of genes and pathways associated with metabolism in Scylla paramamosain under different light intensities during indoor overwintering

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Na Li ◽  
Junming Zhou ◽  
Huan Wang ◽  
Changkao Mu ◽  
Ce Shi ◽  
...  

Abstract Background Scylla paramamosain is one of the commercially crucial marine crustaceans belonging to the genus Scylla, which is commonly distributed along the coasts of China, Vietnam, and Japan. Genomic and transcriptomic data are scarce for the mud crab. Light intensity is one of the ecological factors that affect S. paramamosain during indoor overwintering. To understand the energy metabolism mechanism adapted to light intensity, we analyzed the transcriptome of S. paramamosain hepatopancreas in response to different light intensities (0, 1.43, 40.31 μmol·m− 2·s− 1). Results A total of 5052 differentially expressed genes were identified in low light group (LL group, 3104 genes were up-regulated and 1948 genes were down-regulated). A total of 7403 differentially expressed genes were identified in high light group (HL group, 5262 genes were up-regulated and 2141 genes were down-regulated). S. paramamosain adapts to different light intensity environments through the regulation of amino acids, fatty acids, carbon and energy metabolism. Different light intensities had a strong impact on the energy generation of S. paramamosain by influencing oxygen consumption rate, aerobic respiration, glycolysis/gluconeogenesis pathway, the citrate cycle (TCA cycle) and fatty acid degradation. Conclusion Low light is more conducive to the survival of S. paramamosain, which needs to produce and consume relatively less energy to sustain physiological activities. In contrast, S. paramamosain produced more energy to adapt to the pressure of high light intensities. The findings of the study add to the knowledge of regulatory mechanisms related to S. paramamosain metabolism under different light intensities.

2020 ◽  
Author(s):  
Na Li ◽  
Junming Zhou ◽  
Huan Wang ◽  
Changkao Mu ◽  
Ce Shi ◽  
...  

Abstract Background: Scylla paramamosain is one of the commercially crucial marine crustaceans belonging to the genus Scylla , which is commonly distributed along the coasts of China, Vietnam, and Japan. Genomic and transcriptomic data are scarce for the mud crab. Light intensity is one of the ecological factors that affect S. paramamosain during indoor overwintering. To understand the energy metabolism mechanism adapted to light intensity, we analyzed the transcriptome of S. paramamosain hepatopancreas in response to different light intensities (0, 1.43, 40.31 μmol·m -2 ·s -1 ). Results: A total of 5052 differentially expressed genes were identified in low light group (LL group, 3104 genes were up-regulated and 1948 genes were down-regulated). A total of 7403 differentially expressed genes were identified in high light group (HL group, 5262 genes were up-regulated and 2141 genes were down-regulated). S. paramamosain adapts to different light intensity environments through the regulation of amino acids, fatty acids, carbon and energy metabolism. Different light intensities had a strong impact on the energy generation of S. paramamosain by influencing oxygen consumption rate, aerobic respiration, glycolysis/gluconeogenesis pathway, the citrate cycle (TCA cycle) and fatty acid degradation. Conclusion: Low light is more conducive to the survival of S. paramamosain , which needs to produce and consume relatively less energy to sustain physiological activities. In contrast, S. paramamosain produced more energy to adapt to the pressure of high light intensities. The findings of the study add to the knowledge of regulatory mechanisms related to S. paramamosain metabolism under different light intensities.


2020 ◽  
Author(s):  
Na Li ◽  
Junming Zhou ◽  
Huan Wang ◽  
Changkao Mu ◽  
Ce Shi ◽  
...  

Abstract Background: Scylla paramamosain is one of the commercially crucial marine crustaceans belonging to the genus Scylla, which is commonly distributed along the coasts of China, Vietnam, and Japan. Genomic and transcriptomic data are scarce for the mud crab. Light intensity is one of the ecological factors that affect S. paramamosain during indoor overwintering. Methods: To understand the energy metabolism mechanism adapted to light intensity, we analyzed the transcriptome of S. paramamosain hepatopancreas in response to different light intensities (0, 1.43, 40.31 μmol·m-2·s-1). Results: A total of 5052 differentially expressed genes were identified in the LL group (3104 genes were up-regulated and 1948 genes were down-regulated). A total of 7403 differentially expressed genes were identified in the HL group (5262 genes were up-regulated and 2141 genes were down-regulated). Conclusion: The results showed that S. paramamosain adapts to different light intensity environments through the regulation of amino acids, fatty acids, carbon and energy metabolism. Different light intensities had a strong impact on the energy generation of S. paramamosain by influencing oxygen consumption rate, aerobic respiration, glycolysis/gluconeogenesis pathway, the citrate cycle (TCA cycle) and fatty acid degradation. The results of the current study showed that S. paramamosain produced more energy under high light intensities. The findings of the study add to the knowledge of regulatory mechanisms related to S. paramamosain metabolism under different light intensities.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8001 ◽  
Author(s):  
Jiangnan Sun ◽  
Xiaomei Chi ◽  
Mingfang Yang ◽  
Jingyun Ding ◽  
Dongtao Shi ◽  
...  

Small sea urchins Strongylocentrotus intermedius (1–2 cm of test diameter) are exposed to different environments of light intensities after being reseeded to the sea bottom. With little information available about the behavioral responses of S. intermedius to different light intensities in the environment, we carried out an investigation on how S. intermedius is affected by three light intensity environments in terms of phototaxis, foraging and righting behaviors. They were no light (zero lx), low light intensity (24–209 lx) and high light intensity (252–2,280 lx). Light intensity had obvious different effects on phototaxis. In low light intensity, sea urchins moved more and spent significantly more time at the higher intensity (69–209 lx) (P = 0.046). S. intermedius in high light intensity, in contrast, spent significantly more time at lower intensity (252–690 lx) (P = 0.005). Unexpectedly, no significant difference of movement (average velocity and total distance covered) was found among the three light intensities (P > 0.05). Foraging behavior of S. intermedius was significantly different among the light intensities. In the no light environment, only three of ten S. intermedius found food within 7 min. In low light intensity, nine of 10 sea urchins showed successful foraging behavior to the food placed at 209 lx, which was significantly higher than the ratio of the number (two of 10) when food was placed at 24 lx (P = 0.005). In the high light intensity, in contrast, significantly less sea urchins (three of 10) found food placed at the higher light intensity (2,280 lx) compared with the lower light intensity (252 lx) (10/10, P = 0.003). Furthermore, S. intermedius showed significantly longer righting response time in the high light intensity compared with both no light (P = 0.001) and low light intensity (P = 0.031). No significant difference was found in righting behavior between no light and low light intensity (P = 0.892). The present study indicates that light intensity significantly affects phototaxis, foraging and righting behaviors of S. intermedius and that ~200 lx might be the appropriate light intensity for reseeding small S. intermedius.


1959 ◽  
Vol 7 (3) ◽  
pp. 252 ◽  
Author(s):  
RL Bieleski

A method for determining the effect of light on seedling distribution in the field is described. It can be applied when seedling frequencies are as low as 1/m2. The frequency distribution of light intensities occupied by seedlings in a quadrat is compared with the frequency distribution of light intensities measured on a grid in the quadrat. This method was used to study the effect of light intensity on the establishment of two New Zealand gymnosperms, kauri (Agathis australis) and Phyllocladus trichomanoides, in the nursery community, a semimature Leptospermum scoparium – L. ericoides associes. Kauri and Phyllocladus did not occur at light intensities below 0.015 and 0.018 full daylight respectively. This limitation appeared to be due to the low light intensity presumably limiting photosynthesis. Kauri, but not Phyllocladus, also showed a high light intensity limit, at 0.30 full daylight, above which seedlings did not establish. Reasons are given for considering this as an indirect effect, probably through related solar heating affecting soil temperature or moisture. The optimal light intensity for kauri and Phyllocladus seedling establishment was close to the modal light intensity under the Leptospermum community: Leptospermum spp. were incapable of regenerating under their own cover. These two reasons appear to explain the suitability of the Leptospermum community as a nurse crop for the two conifer seedling species.


1983 ◽  
Vol 25 (5) ◽  
pp. 446-449 ◽  
Author(s):  
Marvin B. Seiger ◽  
Amelia Broach Sanner

Selection was carried out on a population of Drosophila pseudoobscura to obtain lines preferring high-light intensity or low-light intensity during oviposition. This species is generally characterized as preferring low-light intensities. It was possible to select for increased preference for high-light intensity, but not for low-light intensity during oviposition. However, additive genetic variability exists in preferences for both high- and low-light intensities. The original population was probably operating at a photonegative extreme for oviposition, yet maintained enough genetic variability to permit selection toward a photopositive preference.


1972 ◽  
Vol 18 (12) ◽  
pp. 1825-1828 ◽  
Author(s):  
M. Takahashi ◽  
K. Shiokawa ◽  
S. Ichimura

Photosynthetic characteristics of a purple sulfur bacterium, Chromatium, strain D, cultured under various light intensities were examined. With a decrease in the light intensity used for culture, the bacteriochlorophyll a content per unit cell nitrogen increased. Also, at low light intensities, the rate of photosynthesis (per unit bacteriochlorophyll a) was higher in samples grown under low light than in those grown under high light. These two responses to low light intensity are adaptations that ensure a high photosynthetic rate for the purple sulfur bacterium that usually occurs in a dimly lit environment. Possible chemical and structural mechanisms involved are discussed.


2020 ◽  
Author(s):  
Cheng libao ◽  
Han Yuyan ◽  
Zhao Minrong ◽  
Xu xiaoyong ◽  
Shen Zhiguang ◽  
...  

Abstract Background: Lotus is an aquatic horticultural crop, and widely cultivated in most regions of China. Lotus is often used as a kind of an important off-season vegetable with various nutrients. Principle root of lotus is degenerated, and the role of adventitious roots (ARs) is Irreplaceable for plant growth. We found that no ARs could be formed under darkness condition, and high light significantly promote the development of root primordium. Therefore, four libraries with three light intensities were constructed to monitor metabolism changes, especially in IAA and sugar metabolism. Results: We found that ARs formation was significantly affected by light, high light intensity accelerated ARs development. The change of metabolism during ARs formation under different light intensity was evaluated according to gene expression profiling by high-throughput tag-sequencing. It was shown that more than 2.2× 10 4 genes was obtained in each library, and the expression level of most genes were distributed between 1e-01 and 1e+03 (FPKF value). Among these identified genes, 1739, 1683 and 1462 genes were up-regulated, and 1533, 995 and 834 genes were down-regulated in D/CK, E/CK and F/CK libraries respectively. In addition, we also found that 1454 and 478 genes changed expression in D/CK and F/CK libraries when compared D/CK with F/CK libraries. In F/D libraries, the transcriptional level of most differentially expressed genes was between -5~5 fold, and twenty differentially expressed genes were involved in signal transduction pathway. Twenty-eight genes related with IAA response and thirty-five genes involved in sugar metabolism were found to change expression. It was elucidated that IAA content was enhanced after seed germinated, even in darkness condition, which was responsible for ARs formation. Conclusion: The process of ARs formation was very complex, and regulated by multiple factors. The ARs formation was regulated by IAA, even in the dark, induction and developmental process could also be completed. In addition, the genes (36 genes) changed expression level in carbohydrate metabolism showed the third number, so sucrose metabolism was involved in the ARs development (expressed stage) according to genes expression and content change characteristic.


1961 ◽  
Vol 41 (3) ◽  
pp. 457-465 ◽  
Author(s):  
D. W. A. Roberts ◽  
C. Tyrrell

The degree of resistance to the wheat stem sawfly (Cephus cinctus Nort.) of seven varieties of wheat grown under shaded conditions was shown to be lower than that of plants grown under unshaded conditions. The breakdown of resistance of Rescue wheat grown in the greenhouse in the winter was prevented by a high-intensity light supplement of 4000 foot-candles but not by a supplement of 1500 foot-candles. The low resistance of Rescue wheat grown in the greenhouse results from low light intensities in the greenhouse in both summer and winter. It was concluded that high light intensities are required for the maximum expression of stem-solidness and sawfly resistance in Rescue wheat.


In a tank filled with a suspension of indian ink in tap water, a population of Daphnia magna will undergo a complete cycle of vertical migration when an overhead light source is cycli­cally varied in intensity. A ‘dawn rise’ to the surface at low intensity is followed by the descent of the animals to a characteristic maximum depth. The animals rise to the surface again as the light decreases, and finally show a typical midnight sinking. The light intensities at the level of the animals in this experiment are of the same order as those which have been reported in field observations; the time course of the movement also repeats the natural conditions in the field. The process is independent of the duration of the cycle and is related only to the variation in overhead light intensity. At low light intensity the movement of the animal is determined solely by positive photo-kinesis; the dawn rise is a manifestation of this, and is independent of the direction of the light. At high light intensities there is an orientation response which is superimposed upon an alternating positive (photokinetic) phase and a negative phase during which movement is inhibited. The fully oriented animal shows a special type of positive and negative phototaxis, moving towards the light at reduced light intensities and away from it when the light intensity is increased. In this condition it follows a zone of optimum light intensity with some exactness. Experiments show that an animal in this fully oriented condition will respond to the slow changes of intensity characteristic of the diurnal cycle, while being little affected by tran­sient changes of considerable magnitude.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chao Tang ◽  
Ziyan Zhang ◽  
Shen Tian ◽  
Peng Cai

AbstractElectromagnetic radiation is an important environmental factor. It has a potential threat to public health and ecological environment. However, the mechanism by which electromagnetic radiation exerts these biological effects remains unclear. In this study, the effect of Microcystis aeruginosa under electromagnetic radiation (1.8 GHz, 40 V/m) was studied by using transcriptomics. A total of 306 differentially expressed genes, including 121 upregulated and 185 downregulated genes, were obtained in this study. The differentially expressed genes were significantly enriched in the ribosome, oxidative phosphorylation and carbon fixation pathways, indicating that electromagnetic radiation may inhibit protein synthesis and affect cyanobacterial energy metabolism and photosynthesis. The total ATP synthase activity and ATP content significantly increased, whereas H+K+-ATPase activity showed no significant changes. Our results suggest that the energy metabolism pathway may respond positively to electromagnetic radiation. In the future, systematic studies on the effects of electromagnetic radiation based on different intensities, frequencies, and exposure times are warranted; to deeply understand and reveal the target and mechanism of action of electromagnetic exposure on organisms.


Sign in / Sign up

Export Citation Format

Share Document