scholarly journals Key metabolism pathways and regulatory mechanisms of high polysaccharide yielding in Hericium erinaceus

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ming Gong ◽  
Henan Zhang ◽  
Di Wu ◽  
Zhong Zhang ◽  
Jinsong Zhang ◽  
...  

Abstract Background Hericium erinaceus, a rare edible and medicine fungus, is widely used in the food and medical field. Polysaccharides from H. erinaceus are the main bioactive compound that exert high bioactive value in the medical and healthcare industries. Results The genome of H. erinaceus original strain HEA was reported 38.16 Mb, encoding 9780 predicted genes by single-molecule, real-time sequencing technology. The phylogenomic analysis showed that H. erinaceus had the closest evolutionary affinity with Dentipellis sp. The polysaccharide content in the fermented mycelia of mutated strains HEB and HEC, which obtained by ARTP mutagenesis in our previous study, was improved by 23.25 and 47.45%, and a new β-glucan fraction with molecular weight 1.056 × 106 Da was produced in HEC. Integrative analysis of transcriptome and proteomics showed the upregulation of the carbohydrate metabolism pathway modules in HEB and HEC might lead to the increased production of glucose-6P and promote the repeating units synthesis of polysaccharides. qPCR and PRM analysis confirmed that most of the co-enriched and differentially co-expressed genes involved in carbohydrate metabolism shared a similar expression trend with the transcriptome and proteome data in HEB and HEC. Heatmap analysis showed a noticeably decreased protein expression profile of the RAS-cAMP-PKA pathway in HEC with a highly increased 47.45% of polysaccharide content. The S phase progression blocking experiment further verified that the RAS-cAMP-PKA pathway’s dysfunction might promote high polysaccharide and β-glucan production in the mutant strain HEC. Conclusions The study revealed the primary mechanism of the increased polysaccharide synthesis induced by ARTP mutagenesis and explored the essential genes and pathways of polysaccharide synthesis.

Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 262 ◽  
Author(s):  
Lingli Zhu ◽  
Di Wu ◽  
Henan Zhang ◽  
Qiaozhen Li ◽  
Zhong Zhang ◽  
...  

The polysaccharide is the main active substance contained in Hericium erinaceus and is commonly used in the treatment of neurasthenia, tumors, and digestive diseases. Six intracellular polysaccharide components were obtained from H. erinaceus fruiting bodies cultivated by ARTP (atmospheric and room temperature plasma) mutagenic strain (321) and the original strain (0605), respectively. This study was designed to investigate the physicochemical characteristics of these polysaccharide components and their potential immunomodulatory activities on RAW264.7 macrophages. The results showed that the yield of fruiting body cultivated by mutated strain increased by 22% and the polysaccharide content improved by 16% compared with the original one owing to ARTP mutagenesis. The molecular weight distribution and the monosaccharide compositions of polysaccharide components from H. erinaceus induced by ARTP mutagenesis were significantly different from that of the original one. The NO, IL-6, IL-10, IL-1β, and TNF-α production activities of macrophages were enhanced by stimulation of 20% ethanol precipitated polysaccharides from H. erinaceus induced by ARTP mutagenesis. These results indicated that ARTP is an efficient and practical method for high polysaccharide content breeding of the H. erinaceus strain and this provided a reference for obtaining high quality resources and healthy product development from H. erinaceus.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xinglong Su ◽  
Yingying Liu ◽  
Lu Han ◽  
Zhaojian Wang ◽  
Mengyang Cao ◽  
...  

AbstractPlatycodin D and platycoside E are two triterpenoid saponins in Platycodon grandiflorus, differing only by two glycosyl groups structurally. Studies have shown β-Glucosidase from bacteria can convert platycoside E to platycodin D, indicating the potential existence of similar enzymes in P. grandiflorus. An L9(34) orthogonal experiment was performed to establish a protocol for calli induction as follows: the optimal explant is stems with nodes and the optimum medium formula is MS + NAA 1.0 mg/L + 6-BA 0.5 mg/L to obtain callus for experimental use. The platycodin D, platycoside E and total polysaccharides content between callus and plant organs varied wildly. Platycodin D and total polysaccharide content of calli was found higher than that of leaves. While, platycoside E and total polysaccharide content of calli was found lower than that of leaves. Associating platycodin D and platycoside E content with the expression level of genes involved in triterpenoid saponin biosynthesis between calli and leaves, three contigs were screened as putative sequences of β-Glucosidase gene converting platycoside E to platycodin D. Besides, we inferred that some transcription factors can regulate the expression of key enzymes involved in triterpernoid saponins and polysaccharides biosynthesis pathway of P. grandiflorus. Totally, a candidate gene encoding enzyme involved in converting platycoside E to platycodin D, and putative genes involved in polysaccharide synthesis in P. grandiflorus had been identified. This study will help uncover the molecular mechanism of triterpenoid saponins biosynthesis in P. grandiflorus.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11615
Author(s):  
Weida Lin ◽  
Huanwei Chen ◽  
Jianmei Wang ◽  
Yongli Zheng ◽  
Qiuwei Lu ◽  
...  

Background Cyclocarya paliurus (Batal.) Iljinskaja is a common endemic tree species and used as a Chinese medicine. The main active components in the leaves of this plant are polysaccharides. However, the temporal patterns of gene expression underlying the synthesis of polysaccharides in C. paliurus at different leaf developmental stages and its relationship with the polysaccharide content and antioxidant activities has not been reported to date. Methods RNA-seq was used to investigate the biosynthesis pathway of polysaccharides at the four developmental stages of C. paliurus leaves. The content and the antioxidant activities of polysaccharides were measured with typical biochemical methods and the identified correlations were statistically evaluated. Results Sixty-nine differentially expressed genes were found in the leaves during different developmental stages of C. paliurus. These are associated with glycosyltransferases and belong to 18 families. During different developmental stages of C. paliurus, the polysaccharide content first increased and then decreased, and the UDP-glucose 4-epimerase gene was found to be significantly positively correlated with the polysaccharide content. The clearance rates of DPPH radicals, superoxide anion radicals, hydroxyl radicals, and the reducing power of polysaccharides in the leaves of C. paliurus at different developmental stages showed a dose-dependent relationship with the concentration of polysaccharides. Conclusions The smallest fully expanded leaves are suitable for high-quality tea, and leaves with sizes below the largest fully expanded leaves are suitable for industrial production of polysaccharides.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3693
Author(s):  
Tingting Li ◽  
Linjun Chen ◽  
Di Wu ◽  
Guochao Dong ◽  
Wanchao Chen ◽  
...  

Sanghuangporous sanghuang is a rare medicinal fungus which contains polysaccharide as the main active substance and was used to treat gynecological diseases in ancient China. The intracellular polysaccharide yield of S. sanghuang was enhanced by the strain A130 which was screened from mutant strains via atmospheric and room temperature plasma (ARTP) mutagenesis. The objective of this research was to investigate the effects of ARTP mutagenesis on structural characteristics and biological activities of intracellular polysaccharides from S. sanghuang. Six intracellular polysaccharide components were obtained from S. sanghuang mycelia cultivated by the mutagenic strain (A130) and original strain (SH1), respectively. The results revealed that the yields of polysaccharide fractions A130-20, A130-50 and A130-70 isolated from the mutagenic strain fermentation mycelia were significantly higher than those of the original ones by 1.5-, 1.3- and 1.2-fold, and the clear physicochemical differences were found in polysaccharide fractions precipitated by 20% ethanol. A130-20 showed a relatively expanded branching chain with higher molecular weight and better in vitro macrophage activation activities and the IL-6, IL-1, and TNF-α production activities of macrophages were improved by stimulation of A130-20 from the mutagenic strain. This study demonstrates that ARTP is a novel and powerful tool to breed a high polysaccharide yield strain of S. sanghuang and may, therefore, contribute to the large-scale utilization of rare medicinal fungi.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4510
Author(s):  
Pei-Ching Tsai ◽  
Yi-Kai Wu ◽  
Jun-Hao Hu ◽  
I-Chen Li ◽  
Ting-Wei Lin ◽  
...  

Erinacine A, derived from the mycelia of Hericium erinaceus, has attracted much attention due to its neuroprotective properties. However, very few studies have been conducted on the bioavailability, tissue distribution, and protein binding of erinacine A. This study aimed to investigate the bioavailability, tissue distribution, and protein binding of erinacine A in Sprague-Dawley rats. After oral administration (po) and intravenous administration (iv) of 2.381 g/kg BW of the H. erinaceus mycelia extract (equivalent to 50 mg/kg BW of erinacine A) and 5 mg/kg BW of erinacine A, respectively, the absolute bioavailability of erinacine A was estimated as 24.39%. Erinacine A was detected in brain at 1 h after oral dosing and reached the peak at 8 h. Protein binding assay showed unbound erinacine A fractions in brain to blood ratio is close to unity, supporting passive diffusion as the dominating transport. Feces was the major route for the elimination of erinacine A. This study is the first to show that erinacine A can penetrate the blood-brain barrier of rats by the means of passive diffusion and thus support the development of H. erinaceus mycelia for the improvement of neurohealth.


2020 ◽  
Vol 18 ◽  
Author(s):  
Basma Hamdy ◽  
Mohamed Yosri ◽  
Nermin Abed ◽  
Sayed Abel El- Kareem ◽  
Amal Ellithy ◽  
...  

Background: Campylobacter jejuni is the most common cause of enteric infections, particularly among children, resulting in severe diarrhea. Increasing drug resistance of this bacterium against standard antibiotics, favors investigations into additional anti-Campylobacter medications that are already used to overcome effects on enteric infections. Methods: Anti-bacterial activity using well diffusion assay of seventeen fungal extracts were tested against C. jejuni NCTC11168. The obtained results of antibacterial screening showed that different tested fungal isolates have different antimicrobial activities, where Hericium erinaceus extract was the highest activity against tested bacterium. Results: Fractionation pattern has been done by column chromatography. Furthermore, purity was estimated by thin layer chromatography (TLC). Minimal inhibitory concertation (MIC) for the purified compound was 7.81μg/ml. Cytotoxicity for the purified compound was evaluated to be 170μg/ml. 1HNMR, IR and GC-Mass were performed for illustration of suggested structure of bioactive compound purified from H. erinaceus. Conclusion: The data presented here suggested that H. erinaceus could potentially be used in modern applications aimed at the treatment or prevention of Campylobacter jejuni infection.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3330
Author(s):  
Nicolae Baranov ◽  
Stefania Racovita ◽  
Silvia Vasiliu ◽  
Ana Maria Macsim ◽  
Catalina Lionte ◽  
...  

New polymer-bioactive compound systems were obtained by immobilization of triazole derivatives onto grafted copolymers and grafted copolymers carrying betaine units based on gellan and N-vinylimidazole. For preparation of bioactive compound, two new types of heterocyclic thio-derivatives with different substituents were combined in a single molecule to increase the selectivity of the biological action. The 5-aryl-amino-1,3,4 thiadiazole and 5-mercapto-1,2,4-triazole derivatives, each containing 2-mercapto-benzoxazole nucleus, were prepared by an intramolecular cyclization of thiosemicarbazides-1,4 disubstituted in acidic and basic medium. The structures of the new bioactive compounds were confirmed by elemental and spectral analysis (FT-IR and 1H-NMR). The antimicrobial activity of 1,3,4 thiadiazoles and 1,2,4 triazoles was tested on gram-positive and gram-negative bacteria. The triazole compound was chosen to be immobilized onto polymeric particles by adsorption. The Langmuir, Freundlich, and Dubinin–Radushkevich adsorption isotherm were used to describe the adsorption equilibrium. Also, the pseudo-first and pseudo-second models were used to elucidate the adsorption mechanism of triazole onto grafted copolymer based on N-vinylimidazole and gellan (PG copolymer) and grafted copolymers carrying betaine units (PGB1 copolymer). In vitro release studies have shown that the release mechanism of triazole from PG and PGB1 copolymers is characteristic of an anomalous transport mechanism.


2019 ◽  
Author(s):  
Weida Lin ◽  
Huanwei Chen ◽  
Jianmei Wang ◽  
Yongli Zhen ◽  
Qiuwei Lu ◽  
...  

Abstract Background: Cyclocarya paliurus (Batal.) Iljinskaja is a common endemic tree species. The leaves of C. paliurus are used as a Chinese medicine and the main active components are polysaccharides. However, the temporal pattern of polysaccharide synthesis at different leaf developmental stages has not been reported to date. Results: With the development of leaves, the content of polysaccharides increased first and the highest content was found at the F3 stage (the third larger full expanded leaf). A total of 499710194 clean reads were obtained using C. paliurus genomic data and were assembled into 296593 unigenes. Among 4708 identified DEGs, 429 DEGs were up-regulated and 451 DEGs were down-regulated from F1 stage (the smallest full expanded leaf) to F2 stage (the second larger full expanded leaf), 630 DEGs were up-regulated and 60 DEGs were down-regulated from F2 stage to F3 stage, and 1833 up-regulated and 1816 down-regulated DEGs from F3 stage to F4 stage. Forty DEGs associated with GT belong to 13 GT families. Among them, only one gene was down-regulated from F1 stage to F2 stage, two genes were down-regulated from F2 to F3 stages, and 23 genes were down-regulated and 15 genes were up-regulated from F3 stage to F4 stage, respectively. A significant correlation exists between the five unigenes and the polysaccharide content. UDP-glucose 4-epimerase gene was significantly positively correlated with the polysaccharide content. A pathway map for the biosynthesis of C. paliurus polysaccharide was proposed. Among 150 transcription factors identified from DEGs, the majority was members of the AP2/ERF family (21, 14%), followed by the C2H2 family (14, 9.33%), the MYB family (12, 8%), the C2C2-GATA family (10, 6.67%), the GRAS family (9, 6%), and the zf-HD family (7, 4.67%). Conclusions: These results identified genes involved in the biosynthesis of Cyclocarya paliurus polysaccharides during different leaf developmental stages and provided evidence for the change of polysaccharide content during the development of C. paliurus leaves. Possible synthetic pathways and related transcription factors were suggested. This study provides information for the screening of polysaccharide biosynthesis related genes and elucidates the mechanism underlying polysaccharide biosynthesis in C. paliurus.


Sign in / Sign up

Export Citation Format

Share Document