scholarly journals Effects of Atmospheric and Room Temperature Plasma (ARTP) Mutagenesis on Physicochemical Characteristics and Immune Activity In Vitro of Hericium erinaceus Polysaccharides

Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 262 ◽  
Author(s):  
Lingli Zhu ◽  
Di Wu ◽  
Henan Zhang ◽  
Qiaozhen Li ◽  
Zhong Zhang ◽  
...  

The polysaccharide is the main active substance contained in Hericium erinaceus and is commonly used in the treatment of neurasthenia, tumors, and digestive diseases. Six intracellular polysaccharide components were obtained from H. erinaceus fruiting bodies cultivated by ARTP (atmospheric and room temperature plasma) mutagenic strain (321) and the original strain (0605), respectively. This study was designed to investigate the physicochemical characteristics of these polysaccharide components and their potential immunomodulatory activities on RAW264.7 macrophages. The results showed that the yield of fruiting body cultivated by mutated strain increased by 22% and the polysaccharide content improved by 16% compared with the original one owing to ARTP mutagenesis. The molecular weight distribution and the monosaccharide compositions of polysaccharide components from H. erinaceus induced by ARTP mutagenesis were significantly different from that of the original one. The NO, IL-6, IL-10, IL-1β, and TNF-α production activities of macrophages were enhanced by stimulation of 20% ethanol precipitated polysaccharides from H. erinaceus induced by ARTP mutagenesis. These results indicated that ARTP is an efficient and practical method for high polysaccharide content breeding of the H. erinaceus strain and this provided a reference for obtaining high quality resources and healthy product development from H. erinaceus.

Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3693
Author(s):  
Tingting Li ◽  
Linjun Chen ◽  
Di Wu ◽  
Guochao Dong ◽  
Wanchao Chen ◽  
...  

Sanghuangporous sanghuang is a rare medicinal fungus which contains polysaccharide as the main active substance and was used to treat gynecological diseases in ancient China. The intracellular polysaccharide yield of S. sanghuang was enhanced by the strain A130 which was screened from mutant strains via atmospheric and room temperature plasma (ARTP) mutagenesis. The objective of this research was to investigate the effects of ARTP mutagenesis on structural characteristics and biological activities of intracellular polysaccharides from S. sanghuang. Six intracellular polysaccharide components were obtained from S. sanghuang mycelia cultivated by the mutagenic strain (A130) and original strain (SH1), respectively. The results revealed that the yields of polysaccharide fractions A130-20, A130-50 and A130-70 isolated from the mutagenic strain fermentation mycelia were significantly higher than those of the original ones by 1.5-, 1.3- and 1.2-fold, and the clear physicochemical differences were found in polysaccharide fractions precipitated by 20% ethanol. A130-20 showed a relatively expanded branching chain with higher molecular weight and better in vitro macrophage activation activities and the IL-6, IL-1, and TNF-α production activities of macrophages were improved by stimulation of A130-20 from the mutagenic strain. This study demonstrates that ARTP is a novel and powerful tool to breed a high polysaccharide yield strain of S. sanghuang and may, therefore, contribute to the large-scale utilization of rare medicinal fungi.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ming Gong ◽  
Henan Zhang ◽  
Di Wu ◽  
Zhong Zhang ◽  
Jinsong Zhang ◽  
...  

Abstract Background Hericium erinaceus, a rare edible and medicine fungus, is widely used in the food and medical field. Polysaccharides from H. erinaceus are the main bioactive compound that exert high bioactive value in the medical and healthcare industries. Results The genome of H. erinaceus original strain HEA was reported 38.16 Mb, encoding 9780 predicted genes by single-molecule, real-time sequencing technology. The phylogenomic analysis showed that H. erinaceus had the closest evolutionary affinity with Dentipellis sp. The polysaccharide content in the fermented mycelia of mutated strains HEB and HEC, which obtained by ARTP mutagenesis in our previous study, was improved by 23.25 and 47.45%, and a new β-glucan fraction with molecular weight 1.056 × 106 Da was produced in HEC. Integrative analysis of transcriptome and proteomics showed the upregulation of the carbohydrate metabolism pathway modules in HEB and HEC might lead to the increased production of glucose-6P and promote the repeating units synthesis of polysaccharides. qPCR and PRM analysis confirmed that most of the co-enriched and differentially co-expressed genes involved in carbohydrate metabolism shared a similar expression trend with the transcriptome and proteome data in HEB and HEC. Heatmap analysis showed a noticeably decreased protein expression profile of the RAS-cAMP-PKA pathway in HEC with a highly increased 47.45% of polysaccharide content. The S phase progression blocking experiment further verified that the RAS-cAMP-PKA pathway’s dysfunction might promote high polysaccharide and β-glucan production in the mutant strain HEC. Conclusions The study revealed the primary mechanism of the increased polysaccharide synthesis induced by ARTP mutagenesis and explored the essential genes and pathways of polysaccharide synthesis.


Author(s):  
Lei Zeng ◽  
Yanqi Bi ◽  
Pengfei Guo ◽  
Yali Bi ◽  
Tiantian Wang ◽  
...  

High DHA production cost caused by low DHA titer and productivity of the current Schizochytrium strains is a bottleneck for its application in competition with traditional fish-oil based approach. In this study, atmospheric and room-temperature plasma with iodoacetic acid and dehydroepiandrosterone screening led to three mutants, 6–8, 6–16 and 6–23 all with increased growth and DHA accumulations. A LC/MS metabolomic analysis revealed the increased metabolism in PPP and EMP as well as the decreased TCA cycle might be relevant to the increased growth and DHA biosynthesis in the mutants. Finally, the mutant 6–23, which achieved the highest growth and DHA accumulation among all mutants, was evaluated in a 5 L fermentor. The results showed that the DHA concentration and productivity in mutant 6–23 were 41.4 g/L and 430.7 mg/L/h in fermentation for 96 h, respectively, which is the highest reported so far in literature. The study provides a novel strain improvement strategy for DHA-producing Schizochytrium.


Marine Drugs ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 430 ◽  
Author(s):  
Ángela Sánchez ◽  
María Mengíbar ◽  
Margarita Fernández ◽  
Susana Alemany ◽  
Angeles Heras ◽  
...  

The methods to obtain chitooligosaccharides are tightly related to the physicochemical properties of the end products. Knowledge of these physicochemical characteristics is crucial to describing the biological functions of chitooligosaccharides. Chitooligosaccharides were prepared either in a single-step enzymatic hydrolysis using chitosanase, or in a two-step chemical-enzymatic hydrolysis. The hydrolyzed products obtained in the single-step preparation were composed mainly of 42% fully deacetylated oligomers plus 54% monoacetylated oligomers, and they attenuated the inflammation in lipopolysaccharide-induced mice and in RAW264.7 macrophages. However, chitooligosaccharides from the two-step preparation were composed of 50% fully deacetylated oligomers plus 27% monoacetylated oligomers and, conversely, they promoted the inflammatory response in both in vivo and in vitro models. Similar proportions of monoacetylated and deacetylated oligomers is necessary for the mixtures of chitooligosaccharides to achieve anti-inflammatory effects, and it directly depends on the preparation method to which chitosan was submitted.


2021 ◽  
Vol 11 ◽  
Author(s):  
Tan Liu ◽  
Zhiyong Huang ◽  
Xi Gui ◽  
Wei Xiang ◽  
Yubo Jin ◽  
...  

Sponges, the most primitive multicellular animals, contain a large number of unique microbial communities. Sponge-associated microorganisms, particularly actinomyces, have the potential to produce diverse active natural products. However, a large number of silent secondary metabolic gene clusters have failed to be revived under laboratory culture conditions. In this study, iterative atmospheric room-temperature plasma. (ARTP) mutagenesis coupled with multi-omics conjoint analysis was adopted to activate the inactive wild Streptomyces strain. The desirable exposure time employed in this study was 75 s to obtain the appropriate lethality rate (94%) and mutation positive rate (40.94%). After three iterations of ARTP mutagenesis, the proportion of mutants exhibiting antibacterial activities significantly increased by 75%. Transcriptome analysis further demonstrated that the differential gene expression levels of encoding type I lasso peptide aborycin had a significant upward trend in active mutants compared with wild-type strains, which was confirmed by LC-MS results with a relative molecular mass of 1082.43 ([M + 2H]2+ at m/z = 2164.86). Moreover, metabolome comparative analysis of the mutant and wild-type strains showed that four spectra or mass peaks presented obvious differences in terms of the total ion count or extracting ion current profiles with each peak corresponding to a specific compound exhibiting moderate antibacterial activity against Gram-positive indicators. Taken together, our data suggest that the ARTP treatment method coupled with multi-omics profiling analysis could be used to estimate the valid active molecules of metabolites from microbial crudes without requiring a time-consuming isolation process.


2022 ◽  
Vol 10 (1) ◽  
pp. 94
Author(s):  
Fei Yu ◽  
Min Zhang ◽  
Junfeng Sun ◽  
Fang Wang ◽  
Xiangfei Li ◽  
...  

To improve the screening efficiency of high-yield neomycin sulfate (NM) Streptomyces fradiae strains after mutagenesis, a high-throughput screening method using streptomycin resistance prescreening (8 μg/mL) and a 24-deep well plates/microplate reader (trypan blue spectrophotometry) rescreening strategy was developed. Using this approach, we identified a high-producing NM mutant strain, Sf6-2, via six rounds of atmospheric and room temperature plasma (ARTP) mutagenesis and screening. The mutant displayed a NM potency of 7780 ± 110 U/mL and remarkably stable genetic properties over six generations. Furthermore, the key components (soluble starch, peptone, and (NH4)2SO4) affecting NM potency in fermentation medium were selected using Plackett-Burman and optimized by Box-Behnken designs. Finally, the NM potency of Sf6-2 was increased to 10,849 ± 141 U/mL at the optimal concentration of each factor (73.98 g/L, 9.23 g/L, and 5.99 g/L, respectively), and it exhibited about a 40% and 100% enhancement when compared with before optimization conditions and the wild-type strain, respectively. In this study, we provide a new S. fradiae NM production strategy and generate valuable insights for the breeding and screening of other microorganisms.


Sign in / Sign up

Export Citation Format

Share Document