scholarly journals The DUB family in Populus: identification, characterization, evolution and expression patterns

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wenqing Zheng ◽  
Liang Du

Abstract Background The deubiquitinase (DUB) family constitutes a group of proteases that regulate the stability or reverse the ubiquitination of many proteins in the cell. These enzymes participate in cell-cycle regulation, cell division and differentiation, diverse physiological activities such as DNA damage repair, growth and development, and response to stress. However, limited information is available on this family of genes in woody plants. Results In the present study, 88 DUB family genes were identified in the woody model plant Populus trichocarpa, comprising 44 PtrUBP, 3 PtrUCH, 23 PtrOTU, 4 PtrMJD, and 14 PtrJAMM genes with similar domains. According to phylogenetic analysis, the PtrUBP genes were classified into 16 groups, the PtrUCH genes into two, the PtrOTU genes into eight, the PtrMJD genes into two, and the PtrJAMM genes into seven. Members of same subfamily had similar gene structure and motif distribution characteristics. Synteny analysis of the DUB family genes from P. thrchocarpa and four other plant species provided insight into the evolutionary traits of DUB genes. Expression profiles derived from previously published transcriptome data revealed distinct expression patterns of DUB genes in various tissues. On the basis of the results of analysis of promoter cis-regulatory elements, we selected 16 representative PtrUBP genes to treatment with abscisic acid, methyl jasmonate, or salicylic acid applied as a foliar spray. The majority of PtrUBP genes were upregulated in response to the phytohormone treatments, which implied that the genes play potential roles in abiotic stress response in Populus. Conclusions The results of this study broaden our understanding of the DUB family in plants. Analysis of the gene structure, conserved elements, and expression patterns of the DUB family provides a solid foundation for exploration of their specific functions in Populus and to elucidate the potential role of PtrUBP gene in abiotic stress response.

2020 ◽  
Author(s):  
Wenqing Zheng ◽  
Liang Du

Abstract Background: The deubiquitinases (DUB) family are a class of enzymes that regulate the stability or reverse the ubiquitination modification of many proteins in the cell, participating in cell cycle regulation, cell division and differentiation, various physiological activities such as DNA damage repair, growth and development, and response to stress. However, little is known about these genes in the woody plants. Results: In the present study, 88 DUB genes were identified in woody model plant Populus trichocarpa, including 44 PtrUBP, 3 PtrUCH, 23 PtrOTU, 4 PtrMJD, and 14 PtrJAMM with similar domains. According to the phylogenetic analysis, the 44 PtrUBP genes were classified into 14 subfamily, three PtrUCHs were classified into two groups, 23 PtrOTUs had six groups, four PtrMJDs had two groups, and 14 PtrJAMMs had six groups. The structure and motif analysis indicated that the same subfamily had similar genome structure and motif distribution characteristics. Ks/Ka analysis showed that the segmental duplication events played a major role in the expansion of Populus DUB genes. Synteny analysis of Populus DUB genes and four other species provided deep perception into the evolutionary traits of DUB genes. Expression profiles derived from transcriptome data exhibited distinct expression patterns of DUB genes in various tissues. Based on the result of promoter cis-regulatory elements analysis, we selected 16 representative PtrUBP genes to test their response to different hormonal treatments. The results showed that most of PtrUBPs were upregulated in the ABA, SA, and MeJA treatments, implying that their potential roles in abiotic stress response in Populus. Conclusion: The results in this study broaden our understanding of the DUB gene family in plants, and the analysis of the structure, conserved elements, and expression patterns of the DUBs provide a solid foundation for exploring their specific functions in Populus as well as indicate potential role of PtrUBP gene in abiotic stress.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1949
Author(s):  
Tian Fan ◽  
Tianxiao Lv ◽  
Chuping Xie ◽  
Yuping Zhou ◽  
Changen Tian

Members of the IQM (IQ-Motif Containing) gene family are involved in plant growth and developmental processes, biotic and abiotic stress response. To systematically analyze the IQM gene family and their expression profiles under diverse biotic and abiotic stresses, we identified 8 IQM genes in the rice genome. In the current study, the whole genome identification and characterization of OsIQMs, including the gene and protein structure, genome localization, phylogenetic relationship, gene expression and yeast two-hybrid were performed. Eight IQM genes were classified into three subfamilies (I–III) according to the phylogenetic analysis. Gene structure and protein motif analyses showed that these IQM genes are relatively conserved within each subfamily of rice. The 8 OsIQM genes are distributed on seven out of the twelve chromosomes, with three IQM gene pairs involved in segmental duplication events. The evolutionary patterns analysis revealed that the IQM genes underwent a large-scale event within the last 20 to 9 million years. In addition, quantitative real-time PCR analysis of eight OsIQMs genes displayed different expression patterns at different developmental stages and in different tissues as well as showed that most IQM genes were responsive to PEG, NaCl, jasmonic acid (JA), abscisic acid (ABA) treatment, suggesting their crucial roles in biotic, and abiotic stress response. Additionally, a yeast two-hybrid assay showed that OsIQMs can interact with OsCaMs, and the IQ motif of OsIQMs is required for OsIQMs to combine with OsCaMs. Our results will be valuable to further characterize the important biological functions of rice IQM genes.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12484
Author(s):  
Zilin Zhao ◽  
Jiaran Shuang ◽  
Zhaoguo Li ◽  
Huimin Xiao ◽  
Yuling Liu ◽  
...  

Background Golden2-Like (GLK) transcription factors are a type of transcriptional regulator in plants. They play a pivotal role in the plant physiological activity process and abiotic stress response. Methods In this study, the potential function of GLK family genes in Gossypium hirsutum was studied based on genomic identification, phylogenetic analysis, chromosome mapping and cis-regulatory elements prediction. Gene expression of nine key genes were analyzed by qRT-PCR experiments. Results Herein, we identified a total of 146 GhGLK genes in Gossypium hirsutum, which were unevenly distributed on each of the chromosomes. There were significant differences in the number and location of genes between the At sub-genome and the Dt sub-genome. According to the phylogenetic analysis, they were divided into ten subgroups, each of which had very similar number and structure of exons and introns. Some cis-regulatory elements were identified through promoter analysis, including five types of elements related to abiotic stress response, five types of elements related to phytohormone and five types of elements involved in growth and development. Based on public transcriptome data analysis, we identified nine key GhGLKs involved in salt, cold, and drought stress. The qRT-PCR results showed that these genes had different expression patterns under these stress conditions, suggesting that GhGLK genes played an important role in abiotic stress response. This study laid a theoretical foundation for the screening and functional verification of genes related to stress resistance of GLK gene family in cotton.


2020 ◽  
Author(s):  
Shuxun Yu ◽  
Pengyun Chen ◽  
Fei wei ◽  
Shuaishuai Cheng ◽  
Liang Ma ◽  
...  

Abstract Background Valine-glutamine (VQ) motif-containing proteins play important roles in plant growth, development and abiotic stress response. For many plant species, the VQ genes have been identified and their functions have been described. However, little is known about the origin, evolution, and functions (and underlying mechanisms) of the VQ family genes in cotton. Results In this study, we comprehensively analyzed the characteristics of 268 VQ genes from four Gossypium genomes and found that the VQ proteins evolved into ten clades, and each clade had a similar structural and conservative motif. The expansion of the VQ gene was mainly through segmental duplication, followed by dispersal. Expression analysis revealed that the VQ genes play important roles in response to salt and drought stress, especially GhVQ18 and GhVQ84 were significantly high expression in PEG stress and salt stress. Further analysis showed that GhVQ genes were co-expressed with GhWRKY transcription factors (TFs), and microRNAs (miRNAs) could hybridize to their cis-regulatory elements. Conclusions The results in this study broaden our understanding of the VQ gene family in plants, and the analysis of the structure, conserved elements, and expression patterns of the VQ genes provide a solid foundation for exploring their specific functions in the abiotic stress responses in cotton. Our study provides significant insight into the potential functions of VQ genes in cotton.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Pengyun Chen ◽  
Fei wei ◽  
Shuaishuai Cheng ◽  
Liang Ma ◽  
Hantao Wang ◽  
...  

Abstract Background Valine-glutamine (VQ) motif-containing proteins play important roles in plant growth, development and abiotic stress response. For many plant species, the VQ genes have been identified and their functions have been described. However, little is known about the origin, evolution, and functions (and underlying mechanisms) of the VQ family genes in cotton. Results In this study, we comprehensively analyzed the characteristics of 268 VQ genes from four Gossypium genomes and found that the VQ proteins evolved into 10 clades, and each clade had a similar structural and conservative motif. The expansion of the VQ gene was mainly through segmental duplication, followed by dispersal. Expression analysis revealed that many GhVQs might play important roles in response to salt and drought stress, and GhVQ18 and GhVQ84 were highly expressed under PEG and salt stress. Further analysis showed that GhVQs were co-expressed with GhWRKY transcription factors (TFs), and microRNAs (miRNAs) could hybridize to their cis-regulatory elements. Conclusions The results in this study broaden our understanding of the VQ gene family in plants, and the analysis of the structure, conserved elements, and expression patterns of the VQs provide a solid foundation for exploring their specific functions in cotton responding to abiotic stresses. Our study provides significant insight into the potential functions of VQ genes in cotton.


2016 ◽  
Vol 206 ◽  
pp. 1-12 ◽  
Author(s):  
Bulat Kuluev ◽  
Azamat Avalbaev ◽  
Elena Mikhaylova ◽  
Yuriy Nikonorov ◽  
Zoya Berezhneva ◽  
...  

Author(s):  
Qian Wan ◽  
Lu Luo ◽  
Xiurong Zhang ◽  
Yuying Lv ◽  
Suqing Zhu ◽  
...  

AbstractThe nuclear factor Y (NF-Y) transcription factor (TF) family consists of three subfamilies NF-YA, NF-YB and NF-YC. Many studies have proven that NF-Y complex plays multiple essential roles in stress response in Arabidopsis and other plant species. However, little attention has been given to these genes in peanut. In this study, thirty-three AhNF-Y genes were identified in cultivated peanut and they were distributed on 16 chromosomes. A phylogenetic analysis of the NF-Y amino acid sequences indicated that the peanut NF-Y proteins were clustered in pairs at the end of the branches and showed high conservation with previous reported plant NF-Ys. Evolutionary history analysis showed that only segmental duplication contributed to expansion of this gene family. Analysis of the 1500-bp regulatory regions upstream the start codon showed that, except for AhNF-YB6, peanut NF-Ys contained at least one abiotic stress response element in their regulatory region. Expression patterns of peanut NF-Ys in 22 tissues and developmental stages were analyzed. A few NF-Ys showed universal expression patterns, while most NF-Ys showed specific expression patterns. Through RNA-seq and qRT-PCR analyses, expression of six AhNF-Y genes was induced under salt stress in leaves or roots. In addition, AhNF-YA4/8/11, NF-YB4 and NF-YC2/8 also responded to osmotic stress, ABA (abscisic acid) and salicylic acid (SA) treatment.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Shashank Kumar Yadav ◽  
Vinjamuri Venkata Santosh Kumar ◽  
Rakesh Kumar Verma ◽  
Pragya Yadav ◽  
Ankit Saroha ◽  
...  

Abstract Background Abscisic acid (ABA), a key phytohormone that controls plant growth and stress responses, is sensed by the pyrabactin resistance 1(PYR1)/PYR1-like (PYL)/regulatory components of the ABA receptor (RCAR) family of proteins. Comprehensive information on evolution and function of PYL gene family in rice (Oryza sativa) needs further investigation. This study made detailed analysis on evolutionary relationship between PYL family members, collinearity, synteny, gene structure, protein motifs, cis-regulatory elements (CREs), SNP variations, miRNAs targeting PYLs and expression profiles in different tissues and stress responses. Results Based on sequence homology with Arabidopsis PYL proteins, we identified a total of 13 PYLs in rice (BOP clade) and maize (PACCMAD clade), while other members of BOP (wheat – each diploid genome, barley and Brachypodium) and PACCMAD (sorghum and foxtail millet) have 8-9 PYLs. The phylogenetic analysis divided PYLs into three subfamilies that are structurally and functionally conserved across species. Gene structure and motif analysis of OsPYLs revealed that members of each subfamily have similar gene and motif structure. Segmental duplication appears be the driving force for the expansion of PYLs, and the majority of the PYLs underwent evolution under purifying selection in rice. 32 unique potential miRNAs that might target PYLs were identified in rice. Thus, the predicted regulation of PYLs through miRNAs in rice is more elaborate as compared with B. napus. Further, the miRNAs identified to in this study were also regulated by stresses, which adds additional layer of regulation of PYLs. The frequency of SAPs identified was higher in indica cultivars and were predominantly located in START domain that participate in ABA binding. The promoters of most of the OsPYLs have cis-regulatory elements involved in imparting abiotic stress responsive expression. In silico and q-RT-PCR expression analyses of PYL genes revealed multifaceted role of ABARs in shaping plant development as well as abiotic stress responses. Conclusion The predicted miRNA mediated regulation of OsPYLs and stress regulated expression of all OsPYLs, at least, under one stress, lays foundation for further validation and fine tuning ABA receptors for stress tolerance without yield penalty in rice.


2020 ◽  
Author(s):  
Pengyun Chen ◽  
Fei wei ◽  
Shuaishuai Cheng ◽  
Liang Ma ◽  
Hantao Wang ◽  
...  

Abstract Background: Valine-glutamine (VQ) motif-containing proteins play important roles in plant growth, development and abiotic stress response. For many plant species, the VQ genes have been identified and their functions have been described. However, little is known about the origin, evolution, and functions (and underlying mechanisms) of the VQ family genes in cotton.Results: In this study, we comprehensively analyzed the characteristics of 268 VQ genes from four Gossypium genomes and found that the VQ proteins evolved into ten clades, and each clade had a similar structural and conservative motif. The expansion of the VQ gene was mainly through segmental duplication, followed by dispersal. Expression analysis revealed that many GhVQs might play important roles in response to salt and drought stress, and GhVQ18 and GhVQ84 were highly expressed under PEG and salt stress. Further analysis showed that GhVQs were co-expressed with GhWRKY transcription factors (TFs), and microRNAs (miRNAs) could hybridize to their cis-regulatory elements.Conclusions: The results in this study broaden our understanding of the VQ gene family in plants, and the analysis of the structure, conserved elements, and expression patterns of the VQs provide a solid foundation for exploring their specific functions in cotton responding to abiotic stresses. Our study provides significant insight into the potential functions of VQ genes in cotton.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaomin Xu ◽  
Lili Zhang ◽  
Wan Zhao ◽  
Liang Fu ◽  
Yuxuan Han ◽  
...  

Abstract Background The serine carboxypeptidase-like protein (SCPL) family plays a vital role in stress response, growth, development and pathogen defense. However, the identification and functional analysis of SCPL gene family members have not yet been performed in wheat. Results In this study, we identified a total of 210 candidate genes encoding SCPL proteins in wheat. According to their structural characteristics, it is possible to divide these members into three subfamilies: CPI, CPII and CPIII. We uncovered a total of 209 TaSCPL genes unevenly distributed across 21 wheat chromosomes, of which 65.7% are present in triads. Gene duplication analysis showed that ~ 10.5% and ~ 64.8% of the TaSCPL genes are derived from tandem and segmental duplication events, respectively. Moreover, the Ka/Ks ratios between duplicated TaSCPL gene pairs were lower than 0.6, which suggests the action of strong purifying selection. Gene structure analysis showed that most of the TaSCPL genes contain multiple introns and that the motifs present in each subfamily are relatively conserved. Our analysis on cis-acting elements showed that the promoter sequences of TaSCPL genes are enriched in drought-, ABA- and MeJA-responsive elements. In addition, we studied the expression profiles of TaSCPL genes in different tissues at different developmental stages. We then evaluated the expression levels of four TaSCPL genes by qRT-PCR, and selected TaSCPL184-6D for further downstream analysis. The results showed an enhanced drought and salt tolerance among TaSCPL184-6D transgenic Arabidopsis plants, and that the overexpression of the gene increased proline and decreased malondialdehyde levels, which might help plants adapting to adverse environments. Our results provide comprehensive analyses of wheat SCPL genes that might work as a reference for future studies aimed at improving drought and salt tolerance in wheat. Conclusions We conducte a comprehensive bioinformatic analysis of the TaSCPL gene family in wheat, which revealing the potential roles of TaSCPL genes in abiotic stress. Our analysis also provides useful resources for improving the resistance of wheat.


Sign in / Sign up

Export Citation Format

Share Document