scholarly journals Amplicon-based skin microbiome profiles collected by tape stripping with different adhesive film dressings: a comparative study

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kazuhiro Ogai ◽  
Kana Shibata ◽  
Natsuki Takahashi ◽  
Kohei Ogura ◽  
Shigefumi Okamoto ◽  
...  

Abstract Background Medical film dressings have been used to obtain skin microbiota for skin microbiome studies, although their adhesive force may be so strong that the skin could be injured when applied to those who have fragile skin, such as older people. Several products with less adhesive force are available, although their applicability for skin microbiome studies remains unknown. This study aimed to test whether the dressings with less adhesive force could be used for amplicon-based skin microbiome studies. A set of three different film dressings, with acrylic, urethane, or silicone adhesive, was applied to the back skin of nine healthy young participants. The copy number of the 16S ribosomal RNA (rRNA) gene, microbial compositions, and alpha and beta diversity indices were analyzed by amplicon analysis of the 16S rRNA gene using next-generation sequencing and were compared among the three film dressings. Results The dressing with acrylic adhesive yielded the highest copy number of 16S rRNA genes, followed by that with urethane adhesive. The silicone-adhesive dressing yielded a significantly lower copy number of the 16S rRNA gene. The microbial composition of skin microbiota was similar among the three film dressings, although significant differences in the relative abundance of Pseudomonas species and alpha diversity indices were found in the silicone-adhesive dressing. The Bray–Curtis dissimilarity was significantly higher between the acrylic- and silicone-adhesive dressings than between the acrylic- and urethane-adhesive dressings. No adverse effects related to tape stripping were observed for any of the film dressings. Conclusion We recommend dressings with acrylic or urethane adhesive for amplicon-based skin microbiome studies. An acrylic adhesive has an advantage in the yield of skin microbiota, and a urethane adhesive should be chosen when applied to fragile skin. The adhesive force of the dressing with silicone adhesive was too weak to be used for collecting skin microbiota.

Author(s):  
Daniel Goldenberger ◽  
Kirstine K. Søgaard ◽  
Aline Cuénod ◽  
Helena Seth-Smith ◽  
Daniel de Menezes ◽  
...  

AbstractCutibacterium spp. play an increasing role in soft tissue and implant-associated infections. We isolated a novel Cutibacterium spp. from an implant and investigated this isolate using multiple identification approaches. Correct identification was hampered by inconsistent reference data. The isolate was characterised using conventional methods such as Gram stain, MALDI-TOF MS, and antimicrobial susceptibility testing against multiple antimicrobials. Partial 16S rRNA gene sequencing and whole genome sequencing were also performed. In addition, we summarised the available published sequence data and compared prior data to our strain. Conventional phenotypic identification of our isolate resulted in Cutibacterium spp. After analysis of 16S rRNA gene and genome sequences, our isolate was identified as C. modestum, a very recently described species. The 16S rRNA gene analysis was hampered by three incorrect nucleotides within the 16S rRNA gene reference sequence of C. modestum M12T (accession no. LC466959). We also clearly demonstrate that this novel species is identical to tentatively named “Propionibacterium humerusii”. Retrospective data analysis indicates that C. modestum is a clinically important Cutibacterium species often misidentified as C. acnes. The isolation and identification of Cutibacterium spp. is still a challenge. The correct description of very recently named C. modestum and the availability of a correct 16S rRNA sequence of the type strain may help to clarify the taxonomical uncertainty concerning “P. humerusii”. The novel C. modestum is an additional, clinically important species within the genus Cutibacterium and may represent a new member of the human skin microbiome.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4084 ◽  
Author(s):  
Alisa Wilantho ◽  
Pamornya Deekaew ◽  
Chutika Srisuttiyakorn ◽  
Sissades Tongsima ◽  
Naraporn Somboonna

BackgroundSkin microbiome varies from person to person due to a combination of various factors, including age, biogeography, sex, cosmetics and genetics. Many skin disorders appear to be related to the resident microflora, yet databases of facial skin microbiome of many biogeographies, including Thai, are limited.MethodsMetagenomics derived B-RISA and 16S rRNA gene sequencing was utilized to identify the culture-independent bacterial diversity on Thai male faces (cheek and forehead areas). Skin samples were categorized (grouped) into (i) normal (teenage.hea) and (ii) acne-prone (teenage.acn) young adults, and normal (iii) middle-aged (middle.hea) and (iv) elderly (elderly.hea) adults.ResultsThe 16S rRNA gene sequencing was successful as the sequencing depth had an estimated >98% genus coverage of the true community. The major diversity was found between the young and elderly adults in both cheek and forehead areas, followed by that between normal and acne young adults. Detection of representative characteristics indicated that bacteria from the order Rhizobiales, generaSphingomonasandPseudoalteromonas, distinguished theelderly.heamicrobiota, along the clinical features of wrinkles and pores. Prediction of the metabolic potential revealed reduced metabolic pathways involved in replication and repair, nucleotide metabolism and genetic translation in theelderly.heacompared with that in theteenage.hea. For young adults, some unique compositions such as abundance ofPropionibacterium acnesandStaphylococcus epidermidis, with a minor diversity between normal and acne skins, were detected. The metabolic potentials of the acne vs. normal young adults showed thatteenage.acnwas low in many cellular processes (e.g., cell motility and environmental adaptation), but high in carbohydrate metabolism, which could support acne growth. Moreover, comparison with the age-matched males from the US (Boulder, Colorado) to gain insight into the diversity across national biogeography, revealed differences in the distribution pattern of species, although common bacteria were present in both biogeographical samples. Furthermore, B-RISA served as a crosscheck result to the 16S rRNA gene sequencing (i.e., differences between teenage and elderly microbiota).ConclusionsThis study revealed and compared the microbial diversity on different aged Thai male faces, and included analyses for representing the bacterial flora, the clinical skin characteristics, and comparison with the US age-matched. The results represent the first skin microbiota of Thai males, and helps the design of a large-scale skin microbiome study of Thais. The findings of the diversity among ages, skin type and national biogeography supported the importance of these traits in the skin microbiome and in developing a safe and sustainable treatment for acne and aging skin diseases.


2016 ◽  
Author(s):  
Tatsuhiko Hoshino ◽  
Fumio Inagaki

AbstractNext-generation sequencing (NGS) is a powerful tool for analyzing environmental DNA and provides the comprehensive molecular view of microbial communities. For obtaining the copy number of particular sequences in the NGS library, however, additional quantitative analysis as quantitative PCR (qPCR) or digital PCR (dPCR) is required. Furthermore, number of sequences in a sequence library does not always reflect the original copy number of a target gene because of biases caused by PCR amplification, making it difficult to convert the proportion of particular sequences in the NGS library to the copy number using the mass of input DNA. To address this issue, we applied stochastic labeling approach with random-tag sequences and developed a NGS-based quantification protocol, which enables simultaneous sequencing and quantification of the targeted DNA. This quantitative sequencing (qSeq) is initiated from single-primer extension (SPE) using a primer with random tag adjacent to the 5’ end of target-specific sequence. During SPE, each DNA molecule is stochastically labeled with the random tag. Subsequently, first-round PCR is conducted, specifically targeting the SPE product, followed by second-round PCR to index for NGS. The number of random tags is only determined during the SPE step and is therefore not affected by the two rounds of PCR that may introduce amplification biases. In the case of 16S rRNA genes, after NGS sequencing and taxonomic classification, the absolute number of target phylotypes 16S rRNA gene can be estimated by Poisson statistics by counting random tags incorporated at the end of sequence. To test the feasibility of this approach, the 16S rRNA gene of Sulfolobus tokodaii was subjected to qSeq, which resulted in accurate quantification of 5.0 × 103to 5.0 × 104copies of the 16S rRNA gene. Furthermore, qSeq was applied to mock microbial communities and environmental samples, and the results were comparable to those obtained using digital PCR and relative abundance based on a standard sequence library. We demonstrated that the qSeq protocol proposed here is advantageous for providing less-biased absolute copy numbers of each target DNA with NGS sequencing at one time. By this new experiment scheme in microbial ecology, microbial community compositions can be explored in more quantitative manner, thus expanding our knowledge of microbial ecosystems in natural environments.


PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e35647 ◽  
Author(s):  
Josselin Bodilis ◽  
Sandrine Nsigue-Meilo ◽  
Ludovic Besaury ◽  
Laurent Quillet

mSystems ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Jiayue Yang ◽  
Tomoya Tsukimi ◽  
Mia Yoshikawa ◽  
Kenta Suzuki ◽  
Tomoki Takeda ◽  
...  

ABSTRACT The human skin surface harbors huge numbers of microbes. The skin microbiota interacts with its host and forms a skin microbiome profile that is specific for each individual. It has been reported that the skin microbiota that is left on an individual’s possessions can act as a sort of “fingerprint” and be used for owner identification. However, this approach needs to be improved to take into account any long-term instability of skin microbiota and contamination from nonspecific bacteria. Here, we took advantage of single-nucleotide polymorphisms (SNPs) in the 16S-encoding rRNA gene of Cutibacterium acnes, the most common and abundant bacterium on human skin, to perform owner identification. We first developed a high-throughput genotyping method based on next-generation sequencing to characterize the SNPs of the C. acnes 16S rRNA gene and found that the genotype composition of C. acnes 16S rRNA is individual specific. Owner identification accuracy of around 90% based on random forest machine learning was achieved by using a combination of C. acnes 16S rRNA genotype and skin microbiome profile data. Furthermore, our study showed that the C. acnes 16S rRNA genotype remained more stable over time than the skin microbiome profile. This characteristic of C. acnes was further confirmed by the analysis of publicly available human skin metagenome data. Our approach, with its high precision, good reproducibility, and low costs, thus provides new possibilities in the field of microbiome-based owner identification and forensics in general. IMPORTANCE Cutibacterium acnes is the most common and abundant bacterial species on human skin, and the gene that encodes its 16S rRNA has multiple single-nucleotide polymorphisms. In this study, we developed a method to efficiently determine the C. acnes 16S rRNA genotype composition from microbial samples taken from the hands of participants and from their possessions. Using the C. acnes 16S rRNA genotype composition, we could predict the owner of a possession with around 90% accuracy when the 16S rRNA gene-based microbiome profile was included. We also showed that the C. acnes 16S rRNA genotype composition was more stable over time than the skin microbiome profile and thus is more suitable for owner identification.


2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 781-786 ◽  
Author(s):  
Maximo Sánchez ◽  
Martha-Helena Ramírez-Bahena ◽  
Alvaro Peix ◽  
María J. Lorite ◽  
Juan Sanjuán ◽  
...  

Strain S658T was isolated from a Lotus corniculatus nodule in a soil sample obtained in Uruguay. Phylogenetic analysis of the 16S rRNA gene and atpD gene showed that this strain clustered within the genus Phyllobacterium . The closest related species was, in both cases, Phyllobacterium trifolii PETP02T with 99.8 % sequence similarity in the 16S rRNA gene and 96.1 % in the atpD gene. The 16S rRNA gene contains an insert at the beginning of the sequence that has no similarities with other inserts present in the same gene in described rhizobial species. Ubiquinone Q-10 was the only quinone detected. Strain S658T differed from its closest relatives through its growth in diverse culture conditions and in the assimilation of several carbon sources. It was not able to reproduce nodules in Lotus corniculatus. The results of DNA–DNA hybridization, phenotypic tests and fatty acid analyses confirmed that this strain should be classified as a representative of a novel species of the genus Phyllobacterium , for which the name Phyllobacterium loti sp. nov. is proposed. The type strain is S658T( = LMG 27289T = CECT 8230T).


2011 ◽  
Vol 225 (1) ◽  
pp. 65-69 ◽  
Author(s):  
Toshinori Kawanami ◽  
Kazuhiro Yatera ◽  
Kazumasa Fukuda ◽  
Kei Yamasaki ◽  
Masamizu Kunimoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document