scholarly journals The thiol-disulfide exchange activity of AtPDI1 is involved in the response to abiotic stresses

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Lu ◽  
Li Yuan ◽  
Zhou Zhou ◽  
Mengyu Wang ◽  
Xiaoyun Wang ◽  
...  

Abstract Background Arabidopsis protein disulfide isomerase 1 (AtPDI1) has been demonstrated to have disulfide isomerase activity and to be involved in the stress response. However, whether the anti-stress function is directly related to the activities of thiol-disulfide exchange remains to be elucidated. Results In the present study, encoding sequences of AtPDI1 of wild-type (WT) and double-cysteine-mutants were transformed into an AtPDI1 knockdown Arabidopsis line (pdi), and homozygous transgenic plants named pdi-AtPDI1, pdi-AtPDI1m1 and pdi-AtPDI1m2 were obtained. Compared with the WT and pdi-AtPDI1, the respective germination ratios of pdi-AtPDI1m1 and pdi-AtPDI1m2 were significantly lower under abiotic stresses and exogenous ABA treatment, whereas the highest germination rate was obtained with AtPDI1 overexpression in the WT (WT- AtPDI1). The root length among different lines was consistent with the germination rate; a higher germination rate was observed with a longer root length. When seedlings were treated with salt, drought, cold and high temperature stresses, pdi-AtPDI1m1, pdi-AtPDI1m2 and pdi displayed lower survival rates than WT and AtPDI1 overexpression plants. The transcriptional levels of ABA-responsive genes and genes encoding ROS-quenching enzymes were lower in pdi-AtPDI1m1 and pdi-AtPDI1m2 than in pdi-AtPDI1. Conclusion Taken together, these results clearly suggest that the anti-stress function of AtPDI1 is directly related to the activity of disulfide isomerase.

2000 ◽  
Vol 11 (10) ◽  
pp. 3469-3484 ◽  
Author(s):  
Jean Monnat ◽  
Eva M. Neuhaus ◽  
Marius S. Pop ◽  
David M. Ferrari ◽  
Barbara Kramer ◽  
...  

Localization of soluble endoplasmic reticulum (ER) resident proteins is likely achieved by the complementary action of retrieval and retention mechanisms. Whereas the machinery involving the H/KDEL and related retrieval signals in targeting escapees back to the ER is well characterized, other mechanisms including retention are still poorly understood. We have identified a protein disulfide isomerase (Dd-PDI) lacking the HDEL retrieval signal normally found at the C terminus of ER residents in Dictyostelium discoideum. Here we demonstrate that its 57 residue C-terminal domain is necessary for intracellular retention of Dd-PDI and sufficient to localize a green fluorescent protein (GFP) chimera to the ER, especially to the nuclear envelope. Dd-PDI and GFP-PDI57 are recovered in similar cation-dependent complexes. The overexpression of GFP-PDI57 leads to disruption of endogenous PDI complexes and induces the secretion of PDI, whereas overexpression of a GFP-HDEL chimera induces the secretion of endogenous calreticulin, revealing the presence of two independent and saturable mechanisms. Finally, low-level expression of Dd-PDI but not of PDI truncated of its 57 C-terminal residues complements the otherwise lethal yeast TRG1/PDI1 null mutation, demonstrating functional disulfide isomerase activity and ER localization. Altogether, these results indicate that the PDI57 peptide contains ER localization determinants recognized by a conserved machinery present in D. discoideum and Saccharomyces cerevisiae.


Blood ◽  
1992 ◽  
Vol 79 (9) ◽  
pp. 2226-2228 ◽  
Author(s):  
K Chen ◽  
Y Lin ◽  
TC Detwiler

Abstract The release of protein disulfide isomerase by activated platelets was hypothesized on the basis of reported intermolecular and intramolecular thiol-disulfide exchange and disulfide reduction involving released thrombospondin in the supernatant solution of activated platelets (Danishefsky, Alexander, Detwiler: Biochemistry, 23:4984, 1984; Speziale, Detwiler: J Biol Chem, 265:17859, 1990; Speziale, Detwiler: Arch Biochem Biophys 286:546, 1991). Protein disulfide isomerase activity, measured by catalysis of the renaturation of ribonuclease inactivated by randomization of disulfide bonds, was detected in the supernatant solution after platelet activation. The activity was inhibited by peptides known to inhibit protein disulfide isomerase; the peptides also inhibited formation of disulfide-linked thrombospondin- thrombin complexes. The reaction catalyzed by the supernatant solution showed a pH dependence distinct from that of the uncatalyzed reaction. The activity was excluded by a 50-Kd dialysis membrane, and it was eluted in the void volume of a gel-filtration column, indicating that it was associated with a macromolecule. The activity was not removed by centrifugation at 100,000 g for 150 minutes indicating that it was not associated with membrane microvesicles. Possible functions for the release of protein disulfide isomerase by activated platelets are discussed.


2018 ◽  
Author(s):  
Emily J. Furlong ◽  
Fabian Kurth ◽  
Lakshmanane Premkumar ◽  
Andrew E. Whitten ◽  
Jennifer L. Martin

AbstractSuppressor of copper sensitivity protein C from Proteus mirabilis (PmScsC) is a homotrimeric disulfide isomerase that plays a role in copper tolerance – a key virulence trait of the uropathogen. Each protomer of the enzyme has an N-terminal trimerisation stem (59 residues) containing a flexible linker (11 residues) connected to a thioredoxin-fold-containing catalytic domain (163 residues). Here, we characterise two PmScsC variants, PmScsCΔN and PmScsCΔLinker. PmScsCΔN, is an N-terminally truncated form of the protomer with two helices of the trimerisation stem removed, generating a protein with dithiol oxidase rather than disulfide isomerase activity. The crystal structure of PmScsCΔN reported here reveals – as expected – a monomer that is structurally similar to the catalytic domain of native PmScsC. The second variant PmScsCΔLinker was designed to remove the 11 amino acid linker and we show that it generates a protein that has neither disulfide isomerase nor dithiol oxidase activity. The crystal structure of PmScsCΔLinker reveals a trimeric arrangement, with the catalytic domains packed together very closely. Small angle X-ray scattering analysis found that native PmScsC is predominantly trimeric in solution even at low concentration, whereas PmScsCΔLinker exists as an equilibrium between monomeric, dimeric and trimeric states, with the monomeric form dominating at low concentrations. These findings increase our understanding of disulfide isomerase activity, showing how (i) oligomerisation, (ii) spacing between, and (iii) dynamic motion of, catalytic domains in PmScsC all contribute to its native function.


Blood ◽  
2013 ◽  
Vol 121 (19) ◽  
pp. 3789-3800 ◽  
Author(s):  
Eunsil Hahm ◽  
Jing Li ◽  
Kyungho Kim ◽  
Sungjin Huh ◽  
Snezna Rogelj ◽  
...  

Key Points This work is the first identification of a neutrophil surface thiol isomerase regulating adhesive function of αMβ2 integrin. PDI is required for neutrophil recruitment during vascular inflammation and its isomerase activity is critical for the regulatory effect.


Sign in / Sign up

Export Citation Format

Share Document