scholarly journals Development and piloting of a perturbation stationary bicycle robotic system that provides unexpected lateral perturbations during bicycling (the PerStBiRo system)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shani Batcir ◽  
Yaakov Livne ◽  
Rotem Lev Lehman ◽  
Shmil Edelman ◽  
Lavi Schiller ◽  
...  

Abstract Background Balance control, and specifically balance reactive responses that contribute to maintaining balance when balance is lost unexpectedly, is impaired in older people. This leads to an increased fall risk and injurious falls. Improving balance reactive responses is one of the goals in fall-prevention training programs. Perturbation training during standing or treadmill walking that specifically challenges the balance reactive responses has shown very promising results; however, only older people who are able to perform treadmill walking can participate in these training regimes. Thus, we aimed to develop, build, and pilot a mechatronic Perturbation Stationary Bicycle Robotic system (i.e., PerStBiRo) that can challenge balance while sitting on a stationary bicycle, with the aim of improving balance proactive and reactive control. Methods This paper describes the development, and building of the PerStBiRo using stationary bicycles. In addition, we conducted a pilot randomized control trial (RCT) with 13 older people who were allocated to PerStBiRo training (N = 7) versus a control group, riding stationary bicycles (N = 6). The Postural Sway Test, Berg Balance Test (BBS), and 6-min Walk Test were measured before and after 3 months i.e., 20 training sessions. Results The PerStBiRo System provides programmed controlled unannounced lateral balance perturbations during stationary bicycling. Its software is able to identify a trainee’s proactive and reactive balance responses using the Microsoft Kinect™ system. After a perturbation, when identifying a trainee’s trunk and arm reactive balance response, the software controls the motor of the PerStBiRo system to stop the perturbation. The pilot RCT shows that, older people who participated in the PerStBiRo training significantly improved the BBS (54 to 56, p = 0.026) and Postural Sway velocity (20.3 m/s to 18.3 m/s, p = 0.018), while control group subject did not (51.0 vs. 50.5, p = 0.581 and 15 m/s vs. 13.8 m/s, p = 0.893, respectively), 6MWT tended to improve in both groups. Conclusions Our participants were able to perform correct balance proactive and reactive responses, indicating that older people are able to learn balance trunk and arm reactive responses during stationary bicycling. The pilot study shows that these improvements in balance proactive and reactive responses are generalized to performance-based measures of balance (BBS and Postural Sway measures).

2017 ◽  
Vol 30 (2) ◽  
pp. 319-328 ◽  
Author(s):  
Murilo Curtolo ◽  
Helga Tatiana Tucci ◽  
Tayla P. Souza ◽  
Geiseane A. Gonçalves ◽  
Ana C. Lucato ◽  
...  

Abstract Introduction: Basketball is one of the most popular sports involving gestures and movements that require single-leg based support. Dorsiflexion range of motion (DROM), balance and postural control may influence the performance of this sport. Objective: To compare and correlate measures of balance, postural control and ankle DROM between amateur basketball athletes and non-athletes. Methods: Cross-sectional study, composed by 122 subjects allocated into one control group (CG = 61) and one basketball group (BG = 61). These groups were subdivided into two other groups by age: 12-14 years and 15-18 years. The participants were all tested for postural balance with the Star Excursion Balance Test (SEBT), postural control with the Step-down test and DROM with the Weight-bearing lunge test (WBLT). Between-groups differences were compared using repeated-measures multivariate analysis of variance. Normalized reaching distances were analyzed and correlated with the WBLT and Step-down test. Results: There was no difference in the scores of WBLT (P = .488) and Step-down test (P =. 916) between the groups. Scores for the anterior reach (P = .001) and total score of SEBT (P = .030) were higher in BG. The values for the posterolateral (P = .001) and posteromedial reach (P = .001) of SEBT were higher in BG at the age of 15-18. The correlation between the anterior reach of the SEBT and WBLT was significant in BG between 12-14 years (r = 0.578, P = .008), and in the CG between 15-18 years (r = 0.608, P=.001). Conclusion: The balance was better in the BG, although adolescents between 15-18 years have better balance control for the posteromedial and posterolateral reaches of the SEBT.


Author(s):  
Erika Zemková ◽  
Eva Ďurinová ◽  
Andrej Džubera ◽  
Henrieta Horníková ◽  
Juraj Chochol ◽  
...  

Back pain is one of the most costly disorders among the worldwide working population. Within that population, healthcare workers are at a high risk of back pain. Though they often demonstrate awkward postures and impaired balance in comparison with healthy workers, there is no clear relationship between compensatory postural responses to unpredictable stimuli and the strength of related muscle groups, in particular in individuals with mild to moderate back pain. This paper presents a study protocol that aims to evaluate the relationship between peak anterior to peak posterior displacements of the center of pressure (CoP) and corresponding time from peak anterior to peak posterior displacements of the CoP after sudden external perturbations and peak force during a maximum voluntary isometric contraction of the back and hamstring muscles in physiotherapists with non-specific back pain in its early stages. Participants will complete the Oswestry Disability Questionnaire. Those that rate their back pain on the 0–10 Low Back Pain Scale in the ranges 1–3 (mild pain) and 4–6 (moderate pain) will be considered. They will undergo a perturbation-based balance test and a test of the maximal isometric strength of back muscles and hip extensors. We assume that by adding tests of reactive balance and strength of related muscle groups in the functional testing of physiotherapists, we would be able to identify back problems earlier and more efficiently and therefore address them well before chronic back disorders occur.


Author(s):  
Dorota Borzucka ◽  
Krzysztof Kręcisz ◽  
Zbigniew Rektor ◽  
Michał Kuczyński

Abstract Background The aim of this study was to compare the postural control of the Poland national women’s volleyball team players with a control group of non-training young women. It was hypothesized that volleyball players use a specific balance control strategy due to the high motor requirements of their team sport. Methods Static postural sway variables were measured in 31 athletes and 31 non-training women. Participants were standing on a force plate with eyes open, and their center of pressure signals were recorded for the 20s with the sampling rate of 20 Hz in the medial-lateral (ML) and anterior-posterior (AP) planes. Results In both AP and ML planes, athletes had lower range and higher fractal dimension of the COP. They had also higher peak frequency than control group in the ML plane only. The remaining COP indices including variability, mean velocity and mean frequency did not display any intergroup differences. Conclusion It can be assumed that due to the high motor requirements of their sport discipline Polish female volleyball players have developed a unique posture control. On the court they have to distribute their sensory resources optimally between balance control and actions resulting from the specifics of the volleyball game. There are no clearly defined criteria for optimal postural strategies for elite athletes, but they rather vary depending on a given sport. The results of our research confirm this claim. Trial registration The tests were previously approved by the Bioethical Commission of the Chamber of Physicians in Opole. (Resolution No. 151/13.12.2007). This study adheres to the CONSORT guidelines.


2001 ◽  
Vol 91 (5) ◽  
pp. 222-229 ◽  
Author(s):  
Hylton B. Menz ◽  
Stephen R. Lord

Foot problem assessments were performed on 135 community-dwelling older people in conjunction with clinical tests of balance and functional ability. Eighty-seven percent of the sample had at least one foot problem, and women had a higher prevalence than men of foot pain, hallux valgus, plantar hyperkeratosis, lesser digital deformity, and digital lesions. Postural sway did not differ between older people with and without each of these foot conditions. However, the presence of specific foot conditions impaired performance in a more challenging balance test and in some functional tests. In particular, older people with foot pain performed worse in a leaning balance test, stair ascent and descent, an alternate step-up test, and a timed six-meter walk. Furthermore, multiple regression analyses revealed that foot pain was a significant independent predictor of performance in each of these tests. These results show that the presence of foot problems, particularly foot pain, impairs balance and functional ability. As foot pain is amenable to treatment, podiatric intervention has the potential to improve mobility and independence in older people. (J Am Podiatr Med Assoc 91(5): 222-229, 2001)


2019 ◽  
Vol 48 (Supplement_4) ◽  
pp. iv34-iv39
Author(s):  
Daina Sturnieks ◽  
Yoshiro Okubo ◽  
Matthew Brodie ◽  
Stephen Lord

Abstract Appropriately timed and directed balance responses are crucial for avoiding a fall. These responses, including feet-in-place adjustments of the centre of mass, stepping and gait adaptations, may be initiated voluntarily to proactively avoid falling or induced reactively in response to sudden external perturbations to balance. Despite good evidence that poor reactive balance responses contribute to falls and injuries, traditional fall prevention interventions have ignored this skill. Reactive balance (or perturbation) training intervention methods are emerging and show promise for preventing falls in older people, some evidence suggesting a 50% reduction in falls. We recruited 44 older adults into a parallel, blinded randomized controlled trial, comparing 3 sessions of reactive balance training (exposure to trips and slips) to one session of sham training. The primary outcome was falls following laboratory-induced trips and slips (>30% body weight in harness). Relative to the control group, the intervention group experienced fewer total falls (rate ratio [RR]=0.40, 95% confidence interval [CI]=0.22-0.76), slip falls (RR=0.33, 95% CI=0.12-0.90) and trip falls (RR=0.49, 95% CI=0.21-1.12). These results will be discussed in the context of other current evidence for reactive balance training and suggestions made for how such interventions might influence the future of fall prevention.


Author(s):  
Carla Gonçalves ◽  
Pedro Bezerra ◽  
Filipe Manuel Clemente ◽  
Carolina Vila-Chã ◽  
Cesar Leão ◽  
...  

The aims of this study were to analyse the effects of unstable and stable bodyweight neuromuscular training on dynamic balance control and to analyse the between-group differences after the training period. Seventy-seven physically active young adults (48 males, 29 females, 19.1 ± 1.1 years, 170.2 ± 9.2 cm, 64.1 ± 10.7 kg) were distributed into an unstable training group (UTG), a stable training group (STG), and a control group (CG). Training was conducted three times a week for nine weeks. Pre-intervention and post-intervention measures included dynamic balance control using a Y Balance Test (YBT), anterior (A), posteromedial (PM), and posterolateral (PL) reach direction. A mixed ANOVA was executed to test the within-subjects factor and the between-subjects factor. Statistically significant differences were found for all YBT measures within groups (p = 0.01) and between groups (p = 0.01). After the intervention, UTG and STG presented meaningfully improved results in all YBT measures (A: 7%, p = 0.01; 4%, p = 0.02, PM: 8%, p = 0.01; 5%, p = 0.01, PL: 8%, p = 0.01; 4%, p = 0.04, respectively). No statistical changes were found for any of the measures in the CG. After the intervention, significant differences were observed between the UTG and CG for the YBTA and PM (p = 0.03; p = 0.01). The results suggest that neuromuscular training using an unstable surface had similar effects on dynamic balance control as training using a stable surface. When compared to CG, UTG showed better performance in YBTA and PM.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11969
Author(s):  
Erika Zemková ◽  
Alena Cepková ◽  
José M. Muyor

Background Although low back fatigue is an important intervening factor for physical functioning among sedentary people, little is known about its possible significance in relation to the spinal posture and compensatory postural responses to unpredictable stimuli. This study investigates the effect of lumbar muscle fatigue on spinal curvature and reactive balance control in response to externally induced perturbations. Methods A group of 38 young sedentary individuals underwent a perturbation-based balance test by applying a 2 kg load release. Sagittal spinal curvature and pelvic tilt was measured in both a normal and Matthiass standing posture both with and without a hand-held 2 kg load, and before and after the Sørensen fatigue test. Results Both the peak anterior and peak posterior center of pressure (CoP) displacements and the corresponding time to peak anterior and peak posterior CoP displacements significantly increased after the Sørensen fatigue test (all at p < 0.001). A lumbar muscle fatigue led to a decrease of the lumbar lordosis in the Matthiass posture while holding a 2 kg load in front of the body when compared to pre-fatigue conditions both without a load (p = 0.011, d = 0.35) and with a 2 kg load (p = 0.000, d = 0.51). Also the sacral inclination in the Matthiass posture with a 2 kg additional load significantly decreased under fatigue when compared to all postures in pre-fatigue conditions (p = 0.01, d = 0.48). Contrary to pre-fatigue conditions, variables of the perturbation-based balance test were closely associated with those of lumbar curvature while standing in the Matthiass posture with a 2 kg additional load after the Sørensen fatigue test (r values in range from −0.520 to −0.631, all at p < 0.05). Conclusion These findings indicate that lumbar muscle fatigue causes changes in the lumbar spinal curvature and this is functionally relevant in explaining the impaired ability to maintain balance after externally induced perturbations. This emphasizes the importance for assessing both spinal posture and reactive balance control under fatigue in order to reveal their interrelations in young sedentary adults and predict any significant deterioration in later years.


2021 ◽  
Vol 11 (7) ◽  
pp. 894
Author(s):  
Shamali Dusane ◽  
Tanvi Bhatt

Background: This study examined whether a multisession gait-slip training could enhance reactive balance control and fall-resisting skills of people with chronic stroke (PwCS). Methods: A total of 11 PwCS underwent a four-week treadmill-based gait-slip training (four sessions). Pre- and post-training assessment was performed on six intensities of gait-slips (levels 1–6). Training consisted of 10 blocks of each progressively increasing intensity (four trials per block) until participants fell at >2 trials per block (fall threshold). In the next session, training began at a sub-fall threshold and progressed further. Fall outcome and threshold, number of compensatory steps, multiple stepping threshold, progression to higher intensities, pre- and post-slip center of mass (CoM), state stability, clinical measures, and treadmill walking speed were analyzed. Results: Post-training, PwCS demonstrated a reduction in falls and compensatory steps on levels 5 and 6 (p < 0.05) compared to pre-training. While an increase in pre-slip stability was limited to level 6 (p < 0.05), improvement in post-slip stability at lift-off was noted on levels 2, 3, and 5 (p < 0.05) along with improved post-slip minimum stability on levels 5 and 6 (p < 0.05). Post-training demonstrated improved fall (p < 0.05) and multiple stepping thresholds (p = 0.05). While most participants could progress to level 4 between the first and last training sessions, more participants progressed to level 6 (p < 0.05). Participants’ treadmill walking speed increased (p < 0.05); however, clinical measures remained unchanged (p > 0.05). Conclusions: Multisession, progressively increasing intensity of treadmill-based gait-slip training appears to induce significant adaptive improvement in falls, compensatory stepping, and postural stability among PwCS.


2021 ◽  
Vol 15 ◽  
Author(s):  
Hadas Nachmani ◽  
Inbal Paran ◽  
Moti Salti ◽  
Ilan Shelef ◽  
Itshak Melzer

Introduction: Falls are the leading cause of fatal and nonfatal injuries among older adults. Studies showed that older adults can reduce the risk of falls after participation in an unexpected perturbation-based balance training (PBBT), a relatively novel approach that challenged reactive balance control. This study aims to investigate the effect of the practice schedule (i.e., contextual interference) on reactive balance function and its transfer to proactive balance function (i.e., voluntary step execution test and Berg balance test). Our primary hypothesis is that improvements in reactive balance control following block PBBT will be not inferior to the improvements following random PBBT.Methods and Analysis: This is a double-blind randomized controlled trial. Fifty community-dwelling older adults (over 70 years) will be recruited and randomly allocated to a random PBBT group (n = 25) or a block PBBT group (n = 25). The random PBBT group will receive eight training sessions over 4 weeks that include unexpected machine-induced perturbations of balance during hands-free treadmill walking. The block PBBT group will be trained by the same perturbation treadmill system, but only one direction will be trained in each training session, and the direction of the external perturbations will be announced. Both PBBT groups (random PBBT and block PBBT) will receive a similar perturbation intensity during training (which will be customized to participant’s abilities), the same training period, and the same concurrent cognitive tasks during training. The generalization and transfer of learning effects will be measured by assessing the reactive and proactive balance control during standing and walking before and after 1 month of PBBT, for example, step and multiple steps and fall thresholds, Berg balance test, and fear of falls. The dependent variable will be rank transformed prior to conducting the analysis of covariance (ANCOVA) to allow for nonparametric analysis.Discussion: This research will explore which of the balance retraining paradigms is more effective to improve reactive balance and proactive balance control in older adults (random PBBT vs. block PBBT) over 1 month. The research will address key issues concerning balance retraining: older adults’ neuromotor capacities to optimize training responses and their applicability to real-life challenges.Clinical Trial Registration: Helsinki research ethics approval has been received (Soroka Medical Center approval #0396-16-SOR; MOH_2018-07-22_003536; www.ClinicalTrials.gov, NCT04455607).


2020 ◽  
Vol 11 (1) ◽  
pp. 353
Author(s):  
Thomas Flayols ◽  
Andrea Del Prete ◽  
Majid Khadiv ◽  
Nicolas Mansard ◽  
Ludovic Righetti

Contacts between robots and environment are often assumed to be rigid for control purposes. This assumption can lead to poor performance when contacts are soft and/or underdamped. However, the problem of balancing on soft contacts has not received much attention in the literature. This paper presents two novel approaches to control a legged robot balancing on visco-elastic contacts, and compares them to other two state-of-the-art methods. Our simulation results show that performance heavily depends on the contact stiffness and the noises/uncertainties introduced in the simulation. Briefly, the two novel controllers performed best for soft/medium contacts, whereas “inverse-dynamics control under rigid-contact assumptions” was the best one for stiff contacts. Admittance control was instead the most robust, but suffered in terms of performance. These results shed light on this challenging problem, while pointing out interesting directions for future investigation.


Sign in / Sign up

Export Citation Format

Share Document